Properties of artificial bacteriorhodopsin analogs. Version 2, 2020. From 1975 to 2019.

Authors: Khodonov A.A., Belikov N.E., Demina O.V.

Editors: Chupin V.V., Varfolomeev S.D.

IBCP/MIPT, Moscow, Russia

Retinoids. Historical sketch.

The relationship between "night-blindness", or nyctalopia (severe decline of vision in dim light) and certain component in diets of both humans and animals was known back in ancient Egypt. In 1913 McCollum and Davis reported the discovery of a fat-soluble substance in some foods, which stimulated growth of rats and prevented development of "night-blindness" and xerophtalmia, and have called it "factor A", which was later renamed into "vitamin A". In 1930 Karrer has established its structure. Today three groups of chemical compounds are united under names vitamin A and retinoids: the derivatives of retinol (vitamin A alcohol, 2), of retinal (vitamin A aldehyde, 3) and of retinoic acid (RA, 4) (Fig. 1). β -Carotene (provitamin A, 1) as well as a number of other carotenoids were identified at the same time, however their transformation pathways into retinoids were found much later.

Today vitamin A (all-*E*-retinol, 2, Fig. 1) is considered the most multifunctional fat-soluble vitamin in the human body. It plays key roles in many physiological processes such as vision, reproduction, embryonic growth and development, immune competence, cell differentiation, cell proliferation and apoptosis, maintenance of epithelial tissue, and brain function. Severe vitamin A deficiency can lead to xerophthalmia and "night blindness".

Vitamin A comes into the body exclusively with food in the form of retinol esters or from carotenoids split by a number of enzyme systems located in intestines, and is stored as esters in the liver. The role of vitamin A as dietary component required for normal growth and vision was established, vitamin A deficiency (serum vitamin A levels of $<0.7 \mu$ mol L⁻¹) is still prevalent in many developing countries, and considered responsible for child and maternal mortality. The administration of vitamin A alone has been shown to decrease preschool mortality in developing countries by 23–34%. Most of the biological processes linked to retinoids are in fact due to the interaction of several metabolites with retinal based proteins or their nuclear biological receptors. These metabolites are generated *in vivo* by redox changes affecting the functional group (retinal, 3, retinoic acid, 4), the C4-allylic position oxidation or C5-C6-double bond epoxidation, and the conjugated polyene chain and/or by isomerization of some selected double bonds.

Aside from vision, retinoids perform their function in the form of complexes with protein receptors: covalent complexes (retinal based proteins) and noncovalent complexes (nuclear retinoic acid receptors, RAR and RXR). Most of the cellular processes influenced by vitamin A and its analogues are mediated by their binding to (and activating) two families of nuclear receptors as well as to the retinoid metabolizing enzymes. The structural and functional studies of nuclear receptors, and the identification of retinoic acid receptor families, RARs [RAR α (NR1B1), RAR β (NR1B2), and RAR γ (NR1B3)], and retinoid X receptors, RXRs [RXR α (NR2B1), RXR β (NR2B2), and RXR γ (NR2B3)], that are activated by all-*E*-retinoic acid (4) and/or its 9*Z*-isomer have significantly deepened our understanding of the molecular mechanisms by which retinoids as ligands of the nuclear receptor superfamily in general confer the ability onto these inducible transcription factors to regulate target gene transcription.

In medicine: all-*E*-retinoic acid/arsenic trioxide combination therapy (together with chemotherapy protocols primarily for post-remission consolidation and maintenance therapy) of acute promyelocytic leukemia (cures more than 90% of patients). As far as RXR ligands (also called rexinoids) are concerned, the U.S. Food and Drug Administration approved bexarotene in 1999 for the treatment of refractory cutaneous T-cell lymphoma, and efforts are ongoing to dissociate activities that induce hypothyroidism and elevated triglyceride levels, presumably by affecting RXR

heterodimer pathways for other nuclear receptors. A limitation of all-*E*-retinoic acid-based therapies is their teratogenicity and hypervitaminosis, the excess intake of vitamin A, may be harmful to the elderly people due to adverse effects of vitamin A toxicity on bone loss [29, 30, 32].

Retinoid nomenclature and stereochemistry.

Retinoids are referred to as three groups of fat-soluble vitamin A derivatives that differ in the nature of the terminal group. Their molecules consist of the trimethylcyclohexene ring conjugated via four double bonds with the polar terminal group. The numbering of carbon atoms according to IUPAC-IUB recommendations is presented on Fig. 1.

all-Z-Fig. 1. Retinoid derivatives structures diversity.

The retinal molecule by its chemical nature contains lipophilic isoprenoid fragment of size C_{20} with a system of five conjugated double bonds, one of which is contained inside the trimethylcyclohexene ring, and the remaining four in the side chain ending with a terminal aldehyde group.

Two types of isomery are characteristic for retinoids: Z- and E-; s-trans- and s-cis-. Sixteen geometric retinal isomers are possible in total; their structures are presented in Fig. 1. All isomers may be subdivided into sterically unhindered – all-E-; 9Z-; 9Z,13Z- and 13Z-, and sterically hindered – the remaining ones. Isomerization to E-series, both spontaneous and induced by various physical factors (irradiation, temperature) is characteristic of the latter ones. This phenomenon is due to presence of steric difficulties of overlapping van der Waals radii of interacting groups (H, CH₃).

Retinal based Proteins

The retinoid isomers play the key role in functioning processes in retinal based proteins — visual pigments; ion-pump bacteriorhodopsin (BRh), halorhodopsin (HRh), sensoric rhodopsins (SRhI, SRhII), tundra-rhodopsin (ESRh), and others, as well as in the retinoic acid nuclear receptors. Upon absorption of light quantum the isomerization of the definite double bond initiates a cascade of events needed for the generation of the physiological or chemical responses. During the evolution process this property of retinoid molecule became the basis for a number of light quantum energy transformation into chemical energy or some physiological response in biological systems, both in higher animals and microorganisms. Retinal based proteins contain a number of defined retinal isomers as part of their chromophoric groups bound via the protonated aldimine bond with the ε -amino group of the Lys residue.

Retinal proteins (Retinal based proteins) are chromoproteins that function either as sensors or as ion pumps in several species across all domains, Archaea, Eubacteria, and Eukarya. These lightsensitive proteins share a common fold of seven transmembrane (7TM) helices and bind a retinal chromophore through a protonated Schiff base (PSB) with a Lys residue located in helix seven. The absorption maxima of each retinal-based protein are modulated by the ionic environment of the PSB in the binding pocket. Several retinal based proteins with unexpected functions have been discovered and characterized recently.

Fig. 2. Historical timeline of Retinal based proteins studies

General features of Retinal based proteins structure

Retinal based proteins have the following general features of their structures:

- Protein structure 7 helical trans-membrane domain fold (7TM) helices
- Chromophoric group is definite isomer retinal (all-*E* for the microbial pigments and 11*Z* for visual pigments) bounded to protein via protonated aldimine bond (Schiff base)
- Their function is closely connected with sun energy conversion into different chemical or physiological response
- Functional mode: light-driven Cl⁻ pump, light-driven H⁺ pump, light-driven Na⁺ pump, inward H⁺ pump, light-gated cation channel, light-gated anion channel, light sensor with transmembrane transducer and soluble transducer, and light-activated enzyme.

Fig. 3. Functions of microbial retinal based proteins - rhodopsins (RHs): light-driven Cl⁻ **pump, light-driven H**⁺ **pump, light-driven Na**⁺ **pump, light-driven inward H**⁺ **pump, light-gated cation channel, light-gated anion channel, light sensor with transmembrane transducer and soluble transducer, and light-activated enzyme.** Purple or orange arrows indicate uni-directional or bi-directional transport of ions in pumps or channels, respectively [293-294].

The oldest representatives from known retinal based proteins are two visual pigment families – rhodopsins and cone opsins, which responsible for processes dark and color vision. George Wald determined in 1934 that 11Z-retinal (Fig. 1) is the chromophore of the visual pigments. Our understanding of the biochemistry and molecular biology of the visual cycle and the retinoid cycle (the conversion of *all-E*-retinal via 11Z-retinol to 11Z-retinal) has increased enormously in the last years. Other retinal based proteins (microbial rhodopsins) used by microorganisms to control membrane ion homeostasis and phototaxis are based on light-induced photocycles driven by isomerization of the chromophore *all-E*-retinal (3) bound to membrane proteins that are similar to the proteins of the visual cycle.

Retinal based proteins of micrioorganisms are currently considered to be universal and the most abundant biological light energy transducers. Before the 2000s, only microbial rhodopsins from halophilic archaea have been known (bacteriorhodopsin (BRh) and halorhodopsin (HRh)). A 2000 metagenomic study resulted in the discovery of a rhodopsin gene in marine Proteobacteria that was, accordingly, named proteorhodopsin (PRh). Since 2000, thousands of microbial rhodopsins have been identified, in all three domains of life (bacteria, archaea and eukaryota) as well as in large viruses. The renaissance of rhodopsins as a research field has culminated in the development of optogenetics, the revolutionary method for controlling cell behavior in vivo in which microbial rhodopsins play the key role. Several rhodopsins with unexpected functions have been discovered and characterized recently. Among the members of this family are light-driven proton, anion and cation pumps, light-gated anion and cation channels, and photoreceptors. Also, rhodopsins that function as inward proton pumps have been discovered (see, Fig. 2,3) [29, 30, 291-295].

The opsin genes are classified into two groups: Type I opsin genes are found in archaea, eubacteria, fungi, and algae, and Type II opsins are found in animals. Microbial type I opsins, which comprise more than 1000 members, control proton gradients and maintain membrane potential and ionic homeostasis. This group includes the light-driven ion pumps bacteriorhodopsin (BRh) and halorhodopsin (HRh) and light-gated ion channels called channel rhodopsins (ChRhs). Other microorganisms use opsin-based photoreceptors, such as sensory rhodopsin (SRh), to modulate

flagelar movements in phototaxis. In marine photic ocean zone, the light-activated ion pumps from proteobacteria called proteorhodopsins, PRhs, have been linked to the survival of bacterioplancton. Type II or animal opsins couple to G-protein coupled receptors (GPCR)-dependent signal transduction pathways that affect transmembrane ion currents.

All unicellular organisms use all-*E*-retinal (3) bound to opsin in rhodopsin-like photoreceptors to capture energy and/or information from light sources and transform it into light-activated ion channels and pumps. Light absorption induces isomerization of the chromophore from all-*E*-retinal (3) to 13*Z*-retinal. In contrast to type II rhodopsin, the activated 13*Z*-retinal chromophore in type I (microbial rhodopsins) remains covalently bound to its opsin protein partner and thermally reverts rapidly to the all-*E*-retinal state without detaching from the protein. The efficiency of light absorption depends on the extinction coefficient of the complexes (ε_{max} , typically between 50 000 and 70 000 $M^{-1}cm^{-1}$) and the quantum efficiency (Φ , typically between 0.3 and 0.7). The turnover time of the photocycle for most light-driven pumps (HRh and BRh) is 10–20 ms [29, 30, 291-295].

Bacteriorhodopsin

Fig. 4. Halobacterium salinarum cell structure (purple membranes and Bacteriorhodopsin)

Fig. 5. Bacteriorhodopsin primary amino acid sequence (fragment) and secondary structure (PDB 1m0l).

Bacteriorhodopsin (BRh) from *Halobacterium salinarum*, the first discovered microbial rhodopsin in 1971, [1] is the first membrane protein whose structure was found to be composed of seven helices by electron microscopy, and was also the first membrane protein to have its amino acid sequence determined [2-6]. As the best studied microbial rhodopsin, it serves as a paradigm of a light-driven retinal-binding ion pump and aids in studies of novel rhodopsins.

BRh is the focus of our investigation. This compound is a unique natural photochrome acting as a light-driven proton pump. It is located in special areas of the cells, purple membranes (PM),

consisting of BRh trimers embedded in the lipid bilayer. The chromophoric group of this protein is the protonated aldimine of all-*E*- and 13*Z*-isomers of vitamin A aldehyde (retinal). The purple membrane (PM) of *Halobacterium salinarum* is a natural 2D crystal honeycomb lattice of BRh trimers. The BRh protein contains a single polypeptide chain (248 aa) and converts light energy absorbed by the retinal chromophore covalently linked via a PSB to ε -amino group of Lys216 in helix 7 into a proton electrochemical gradient across the membrane (Fig. 4-8).

Fig. 6. (A) Structure of bacteriorhodopsin (BRh), with conserved aromatic residues highlighted (PDB ID: 1QM8). (B) Crystallographically observed internal water molecules of BR (shown as green spheres)[291, 292]. Tyr83, Trp86, and Trp182 are strongly conserved among microbial rhodopsins (orange). Aromatic amino acids are strongly conserved at the position of Tyr185, Trp189, and Phe219 (yellow). In BRh, Trp86, Trp182, Tyr185, and Trp189 constitute the chromophore binding pocket for all-*E*-retinal (gray).

Fig. 7. Bacteriorhodopsin photocycle [291-294].

BRh undergoes cyclic photochemical reactions accompanied by the isomerization of the chromophore polyene chain and the deprotonation and reprotonation of the retinal aldimine moiety (Fig. 7, 8). The ground - B-state (λ_{max} 570 nm, ϵ 63,000 M⁻¹ cm⁻¹) and the M_{1,2}-states (λ_{max} 412 nm, ϵ 45,000 M⁻¹ cm⁻¹, Φ 0.64) are the key states. Fig. 7 depicts the photocycle of BRh with the species spectroscopically characterized, the wavelength at which each intermediate maximally absorbs light

and their lifetimes. Six discrete steps are recognized to account for the isomerizations (from BRh568 to K610 and from N530 to O646), proton transport (from L550 to M₁ 412 and from M₂ 412 to N530), and accessibility changes (from M₁ 412 to M₂ 412 and from O646 to BRh568) of the photocycle. A net transfer of one proton from the cytoplasm to the extracellular side of the membrane is produced under physiological conditions (pH > 7) as a result, and the ground-state configuration containing all-*E*-retinal PSB is recovered. The proton transport sequence comprises transfer of a proton to Asp85, release of a proton from the cytoplasm to reprotonate Asp96, and the reprotonation of the SB by Asp96, uptake of a proton from the cytoplasm to reprotonate Asp96, and the reprotonation of the proton release complex from Asp85, followed by a final proton transfer from Asp85 to Arg82.

The dark-adapted BRh chromophore consists of a mixture of all-*E*-15-*anti*-PSB and 13*Z*-15-*syn*-PSB 1:1. The crystal structure of BRh in the dark-adapted state with 13*Z*-15-*syn*-retinal-PSB revealed that the configuration changes due to retinal isomerization affect residues in the vicinity of the PSB, but most of the aromatic amino acids that surround the chromophore, and the polypeptide backbone of Lys216, undergo small displacements. The photochemistry and photophysics of BRh have been the subject of intense investigations [291-294].

Fig. 8. Main proton transfer steps in the bacteriorhodopsin photocycle [291-294].

The proton pathway across the membrane from the cytoplasmic to the extracellular side in BRh is shown in Fig. 8, together with protonatable groups and the order of respective proton transfers. Protonatable groups and bound water molecules important for transport activity are shown as stick representation and blue spheres, respectively (PDB ID: 1C3W). Numbers with arrows represent the sequence of proton transfer reactions, the corresponding transitions between the photointermediates are indicated in the inset. The TM helices are shown in the following colors: A, blue; B, teal; C, green; D, lime green; E, yellow; F, orange; G, red; and the chromophore is depicted as black sticks. (1) Proton transfer from the RSBH⁺ to the primary proton acceptor Asp85; (2) proton release to the extracellular medium from the proton-releasing complex; (3) reprotonation of the RSB from the primary proton donor Asp96; (4) reprotonation of Asp96 from the cytoplasmic medium; (5) proton transfer from Asp85 to the proton-releasing complex.

The absorption of light by the light-adapted BRh form (which contains the all-*E*-15-anti-PSB chromophore) induces an ultrafast photocycle (complete in less than 30 ms), which starts with the isomerization of all-*E*-retinal PSB to the 13*Z*-isomer (with the 15-anti-configuration) on the "vibrationally hot" I state followed by a thermal relaxation process involving conformational changes of the retinal and the protein. Light absorption initiates functions of both microbial and animal rhodopsins, and the wavelength dependence of the absorption efficiency determines the colors of the

proteins. The structural features of the protonated Schiff base chromophore and the proton/ion conduction pathway regulate the absorption maxima of the pigments: ChRh, $\lambda_{max} \approx 470$ nm; SRhII, $\lambda_{max} \approx 487$ nm; BRh, $\lambda_{max} \approx 568$ nm; HRhs, $\lambda_{max} \approx 580$ nm; SRhI, $\lambda_{max} \approx 587$ nm.

The length of the π -conjugated polyene chain in the retinal chromophore as well as the protonation of the retinal SB linkage determine the energy gap of the π - π * transition, so that the absorption of most rhodopsins is within the visible region (400–700 nm). While the chromophore molecule is usually the same in all pigments (retinal bound via a (protonated) Schiff base), the absorption maxima differ significantly, implying an active protein control of the energy gap between the ground and excited states of the retinal chromophore.

The mechanism of color tuning has fascinated researchers for a long time, and several factors have been determined to be responsible for it. The protonation state of the chromophore plays a crucial role in color tuning; the unprotonated retinal SB absorbs in the UV region ($\lambda_{max} \sim 360-380$ nm), and this absorption is quite insensitive to the environment in contrast to the RSBH⁺ (PSB), which exhibits a large variation in absorption covering the entire visible light spectrum. Other factors defining the spectral tuning of individual rhodopsins are given by chromophore–protein interactions such as electrostatic interactions with charged and polar amino acids, termed electrostatic tuning and extensively studied, first using retinal analogues, and, later, sitedirected mutagenesis [29, 30, 291-295].

Interactions of retinal with charged, polar, and aromatic amino acids play a role in changing the electronic energy levels, as do hydrogen-bonding interactions and steric contact effects. Strong hydrogen bonds can lead to charge transfer, and steric contacts can lead to a twist of retinal. All these tuning processes in concert shape the absorbance maxima of retinal in microbial and animal rhodopsins. One of the most prominent factors in color tuning is the interaction of retinal with the counterion(s). For microbial rhodopsins, however, the C6–C7 bond is 6-s-*trans*, although the C6–C7 6-s-*cis*-conformer is more stable in solution. As a consequence, an extended conjugation of π -electrons becomes possible from the polyene chain to the β -ionone ring, which presumably contributes to the considerable spectral red-shift observed in microbial rhodopsins. In fact, while absorbance spectra of protonated Schiff bases of all-*E*- and 11*Z*-retinal in MeOH solution are similar ($\lambda_{max} \sim 450$ nm), most microbial and animal rhodopsins typically possess λ_{max} in 520–580 nm and 480–525 nm ranges, respectively, which can in part be explained by the differences in the C6–C7 bond conformation.

The energy difference between ground (S_0) and excited (S_1) states of the rhodopsin-like proteins was initially considered to depend upon the planarity of the chromophore (a 6-s-*trans*conformation and an elongated, almost planar polyene chain for BRh), the distance between the PSB and the counterion, and the interactions of the chromophore with amino acid residues in the binding pocket (the "two-point" charge model, which suggested the presence of a negative charge close to the hydrophobic ring). The term "opsin shift", defined as the difference between the protein absorption maximum and that of model retinal N-butylamine-PSB hydrochloride in MeOH, was coined to quantify the effect of the apoprotein on the absorption maximum of the retinal chromophore.

Thus, the chromophore molecule modification is a promising approach to the structurefunction relationship study in BRh. Analogues of the native chromophore have yielded valuable structural, spectroscopic, and functional insights into the ground-state structure of the chromophore in the complex before X-ray structures became available, and continue to provide information on the nature of the photocycle intermediates. Produced by chemical synthesis, retinal analogues have been obtained with alterations on the polyene side-chain by substitution (demethylations, change of methyl positions), saturation of double bonds, incorporation of substituents (halogens, alkyl groups) and additional rings to lock conformations and/or configurations, and modifications on the trimethylcyclohexenyl ring.

The uniqueness of BRh – a natural photocontrollable photosynthetic system – for nanobiophotonics is defined by its following properties:

1) BRh is the most simple and surprisingly stable proton pump;

2) availability in high quantities, simplicity of isolation with relatively low cost;

3) stability in intensive light, oxygen, wide range of temperatures $(-196 - 70^{\circ}C)$, pH values (0-11), concentrations of salts, water-glycerol media;

4) the "primary act" after photon absorption $(B \rightarrow J)$ is an extremely fast process (0.5 ps);

5) high quantum yield (Φ 0.64);

6) possibility of making "dry" films as well as integrating BRh into polymer matrices of various compositions;

7) application possibilities both in optical and electronic devices, using either varying optical or electrical component of the response.

Fig. 9. An overview of BRh-based bioelectronic devices showing the photocycle, preparation method, and photochemical and photoelectric applications

Fig. 9 shows the roadmap of BRh-based bioelectronics applications since the discovery of BRh protein which reveals the development of BRh application [296].

Basic directions in the retinal molecule modification strategy

This chromoprotein is one of the first successful examples of biological photochromic material designed by the nature. One promising area of research on the retinal protein structure function relationship involves the replacement of the natural chromophore by analogs and the comprehensive study of the hybrid products. The photochemical properties of analogs BRh (ABR) can be controlled using the following approaches: 1) the substitution of one or more amino acid residues in certain positions of the BRh molecule by genetic engineering methods (using BRh mutant strainswith slower photocycles); 2) the use of natural BRh incorporated into a polymer matrix, oriented Langmuir-Blodgett films, or oriented layers immobilized on a solid support; 3) the use of environmental conditions (low temperature, electric fields, humidity, pH level); 4) a combination of the above-mentioned approaches. General directions of the BRh chromophore structure modification are depicted in Figs. 10, 11. The comparative analysis of our and other researchers' data has shown, that by diversification of the chromophore structure, it is possible directly to change λ_{max} in the spectra of the BRh analogs in the rather wide interval (from 412 to 830 nm), though not all of these pigments are capable for cyclic photochemical reactions.

We have previously developed a common procedure for structure function studies of retinal proteins. The preparation of BRh analogs (ABR) and the testing scheme are shown in the Fig. 9. Several approaches to the preparation of ABR have been developed earlier based on the addition of polyenals to:

1) growing cells of retinal-deficient *H. salinarum* strains (for example, JW5);

2) to "white" membranes or membrane vesicles obtained from the retinal-deficient strains;

3) to so-called apomembranes containing bacterioopsin (BO) generated from purple membranes by hydroxylaminolysis at pH 7.0 and $0-5^{0}$ C under intense illumination. We used the third approach in our investigations with an additional procedure for the removal of retinal oxime based on the treatment of BO with a saturated solution of β -cyclodextrin. Then a comprehensive study of the artificial pigments: the kinetic peculiarities of the formation of BRh analogs, the spectral properties

 (λ_{max}) , the presence and type of the photochemical cycle, quantum yield, the adaptation to the light and darkness) and the efficiency of the proton transport were undertaken.

The synthesized retinal analogs were tested in recombination with bacterioopsin (BO), from apomembranes *H. salinarum* (strain ET1001). Apomembranes obtained from purple membranes by hydroxylaminolysis at pH 7.0 and 0 - 5°C and intensive illumination. Resynthesis of pigments conducted by addition of a methanol solution of analog to a suspension apomembranes in a buffer (protein concentration - 2 mg/ml, 21°C, pH 6.0, 5 mM MES). It was found, that the formation of pigments takes place from several min till 1 month period. It should be noted that position of the ABR λ_{max} located from 412 to 830 nm.

Fig. 10. Technology of the Bacteriorhodopsin analogs production.

Fig. 11. Basic directions in the retinal molecule modification strategy

All retinal molecule modification variants were divided in next charts:

- A. Natural chromophore retinal and its isomers
- B. Terminal polar group modification
- C. Polyenic chain modification
- D. Alteration of the bond types and its disposition in the chromophore polyenic chain
- E. Alteration of the polyenic chain length and bond disposition and terminal group types
- F. Alteration or locking of the bond configuration. Non-isomerizable analogs
- G. Alteration of the trimethylcyclohexenic ring. Ring modification

H. Alteration of the trimethylcyclohexenic ring. Replacement ring to aromatic or heterocyclic fragments

I. Alteration of the trimethylcyclohexenic ring. Acyclic analogs

J. Miscellaneous modifications

K. Labelled BRh derivatives (radioactive, photo-affinic, fluorophoric, heavy-atom, paramagnetic (SL), ionophoric and photochromic probes)

The next year will be 50-year anniversary from discovery of the bacteriorhodopsin by D. Oesterhelt and W. Stoekenius [1].

Below we are presenting the database "Properties of artificial bacteriorhodopsin analogs. Version 2, 2020. From 1975 to 2019", which combined information from our and literature data sources with duration period 1975 - 2020. The comparative analysis of our database, including the information on spectral characteristics and proton transport efficiency of the interaction products about 440 polyenic compounds with BO has shown, that by diversifying the chromophore nature, it is possible to directly change λ_{max} in ABR spectra in a rather wide interval (from 412 to 830 nm), though not all these pigments are capable to cyclic photochemical reactions.

In the frames of defined type modification relationship between λ_{max} position in dependence of chromophore nature could be described by linear regression equations in axes (Y) - $\lambda_{max}SB$ or $(SBH^+, P^{LA}) / (X)$ - $\lambda_{max}(CHO)$. These relationships could be used for the prognosis of the spectral properties of ABR from new retinal derivatives and BO.

This work was partly supported by RFBR (projects № 09-03-00565, 16-04-01254, 20-03-00139).

For contacts: E-mail: <u>khodonov@gmail.com</u>, <u>nikolay@belikov.me</u>

	Structure	Isomer			λ _{max} (n	m); ε (M	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with	Γ	Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	T F	Pigment	is		М	90111p %	ratio	cm ⁻¹		T	CD	others	-
							(P)	DA	LA	1			all-E/13Z-	om	NH₂OH	all-E-RET			
							Α.	Natural	chromor	phore —	- retinal	and its	isomers				<u> </u>		
	$\langle \rangle$	all-E- all-E-	381 380	360 360	440 437		558		568 570	+ + +	412 412	100 100	50/50 100/0	4810 5120 5350		T		рК _а 13.3-+0.3	<u>1-32</u> 17
		all-E-	380			400, 430/													
		all-E-			440	460		555	568				<2 13Z-						Biochem
		13Z-	375				548	555	568			0	0/100						<u>17(25),</u> 5353- 5359 Eur. J.
		11Z-	254, 290sh 377			400													Biochem <u>1977,</u> <u>76, 499-</u> <u>511</u>
		9Z- 9Z,13Z-			465	388 390/ 470													JACS. 1996, 118(45), 11299- 11200
		all-E-					570 605 565											in water. pH 7.0 pH 2.5 pH 0.5	Biophys.J 1989 56(6) 1259- 1265
	6-s-trans conformer	all-E-	381				568							3900					JACS. 1986. 108(11) 3104 -
	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>В.</u> Т	erminal	l polar gr	oup mc	odificati	on		<u> </u>	<u> </u>	<u> </u>		<u>3105</u>
2.	X	all-E-				332	NO											str. R ₁ M ₁	Biochem 1978, 17(25), 5353- 5359

	Structure	Isomer			λ _{max} (n	m); ε (Μ [.]	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reactio	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC		Pigment	s		М	%	ratio	cm ⁻¹			CD	others	-
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
		all-E-					NO											str. R₁M₁ cells suspensions with 1 mM nicotine	Biochem Soc.Tran s. 1976. 4(4), 556 - 559
3.	К	all-E-	325			344sh 357, 376	NO											str. R ₁ M ₁	Biochem <u>1978,</u> <u>17(25),</u> 5353-
		13Z-				345, 360, 376sh													<u>5359</u>
		11Z-				345, 360, 376sh													
		9Z-				330													
		all-E-					NO											str. R ₁ M ₁ cells suspensions with 1 mM nicotine	Biochem Soc.Tran s. 1976. 4(4), 556 - 559
4.	ОСН3	all-E-				336, 357sh 376sh	NO											str. R ₁ M ₁	Biochem 1978, 17(25), 5353- 5359
5.	Сососна	all-E-					NO											str. R ₁ M ₁	2
6.	Xadada	all-E-					NO											str. R ₁ M ₁	Biochem 1978, 17(25), 5353- 5359
7.	CO2H	all-E-					NO NO											str. R_1M_1 str. R_1M_1 cells suspensions with 1 mM nicotine	Biochem Soc.Tran s. 1976.

	Structure	Isomer			λ _{max} (n	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigment	s		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
																			<u>4(4), 556</u> <u>- 559</u>
8.	WH ₂ CH ₃	all-E-				NO	NO											str. R ₁ M ₁	Biochem <u>1978,</u> <u>17(25),</u> <u>5353-</u>
								C.	Polver	ic chair	n modifi	cation							<u>5359</u>
9.		all-E-	377	362	439		565	<u>.</u>	565	+		+		5080				str.353P, pH 6.5,	Bioorgan
																		20°C τ_{rec} 13Z 0.5h τ_{rec} all-E- 2 days τ_{Mdecay} decelerated There 2 long-waved intermediates 13Z- (BRA) $\tau_{form(1)}$ <200 ns; $\tau_{form(2)}$ ~ms; Photoelectrical responses are smaler in amplitudes and drastically differ in form and kinetics from natural BR cycle. No L-D adaptation	Khim. 1988. 14(3). 434-436 Biophysi cs (Rus). 1989. 34(4). 623-626 Bioorgan Khim.19 89. 15(11). 1484- 1497 Archiv. Biochem Biochem Biophys 1990. 279(2). 225-231 Biolog Membra ny 1998. 12(1). 121-123.
		all-E- 13Z- 11Z-	380 ^b				565 565 565	565	565 ε 60000	+	420	1-3	21/69 15/85 15/85 8/92 10/80/10 all-E /13Z/					White membranes, str. JW5, 21°C. "M"- like intermediate has two species in 1.5 : 1 ratio. In cycle all-E "M" ⁴²⁰ BRA $\tau_{1/2Mform}$ 25/400 µs, $\tau_{1/2Mdecay}$ 20/1700 ms,	Tetrahed ron L. 1980. 21(4). 347-350. Biochem 1988. 27(9). 3497 -

	Structure	Isomer		2	^ک max (nr	n); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	is with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigment	S		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
		9Z- 7Z-					NO 495						11Z					$\begin{array}{l} 85\%) \ I^{610} \ \tau_{form} <\!\! 4\mu s, \\ \tau_{decay} \ 250 ms \\ Photophosphorilation \\ rate \ 1.1\% \ from \ control \\ BR \end{array}$	3502 Biochem 1983. 22(11). 2637– 2644
		all-E-	366°						565 ε 60000	+	+	16						White membranes, str. JW5, (BRA)- ^{<5ns} - >K - ^{0.4 s} >(BRA)	Biochem 1987. 26(3), 751-758
		all-E-	365°			430	560	560	560			0						str. R ₁ S ₉ , 22°C. all-E-430 nm species	Recl. 1983.
		13Z-				430	560		300			0	0/100					DRA Stable III dark	$\frac{102(1)}{42-46}$
		11Z-				430	560		560			0							<u>Recl.</u> 198r3. 102(1),
		9Z- 7Z-				NO NO	NO NO												<u>46 -51</u>
		all-E-					554 595 595											in water. pH 7.0 pH 2.5 pH 0.5	Biophys. J., 1989, 56, 1259- 1265
		all-E-							565	+								Photochemistry of 13- desmethyl BRA Resonance Raman spectra of BRA	J. Phys. Chem. B 2005. 109(33), 16142- 16152. J. Phys. Chem. 1990, 94(12), 4920- 4926
		all-E-						569 567		+	410	<20 WT	15/85		stable			native WT transform WT	The Biology ChemInt erface

ſ		Structure	Isomer			λ _{max} (nr	n);ε(M	¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
	No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	www.pump	ratio	cm ⁻¹			CD	others	1
								(P)	DA	LA				all-E/13Z-	om	NH ₂ OH	all-E-RET			
									566				0 R82A						R82A str. IV-8 pK _a R82A 8.1 τ_{Mdecay} 3 s "O" 600nm, arises from the 13-cis cycle and is long lived.	<u>1999 ch</u> <u>15 431-</u> <u>444</u>
																			Raman spectra Schiff base (-C=NH-) stretching frequency. 1642 cm ⁻¹	Photoche mPhotob iol 1985 41(5) 563-567
																			BRA quantum-chem calculations	BiophysJ 1985 47(3) 349-355
									560										str. S9 BRA cycle was tested by picosecond transient spectroscopy (PTA). "J" "K"	<u>Chem.</u> <u>Phys.</u> <u>Lett.</u> <u>1992,</u> <u>190(3-</u> <u>4), 298-</u> <u>304.</u>
			all-E-						565			410							Holographic properties of BRA film in gelatin matrix were investigated.	Optical <u>Rev.</u> 2001, 8(5), 368-372.
	10.	CD3 CD3	all-E-	381	360	440		565		565	+		+++		5030 5030				str.353Ρ, pH 6.5 τ _{rec} 0.5 h, 20°C	Bioorgan Khim. 1988. 14(3). 434-436 Bioorgan Khim. 1989. 15(11). 1484- 1497. Archiv. Biochem

		Structure	Isomer			λ _{max} (ni	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- numn	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
Ν	lo			"CHO"	SB	SBH⁺	NC	F	vigments	S		М	%	ratio	cm ⁻¹			CD	others	1
								(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			
																			10 mM Henes buffer	<u>.Biophys</u> <u>1990.</u> <u>279(2),</u> <u>225–231</u> Bioorgan
																			pH 7.3. PM washing with BSA. Kinetic isotope effects for dark adaptation for BRA.	<u>Chem</u> <u>1991</u> <u>19(1)</u> <u>18-28</u>
11	1.	Xalano.	all-E-	383	365	446		567			+	+	++		4790				str.353P, pH 6.5 τ_{rec} 0.5 h 20°C BRA cycle similar to BR (M, O). L-D adaptation decelerated	Bioorgan Khim. 1988, 14(3), 434-436 Bioorgan Khim. 1989, 15(11), 1484, 1497, Archiv. Biochem Biochem Biophys 1990, 279(2), 225-231
			all-E-	379 ^b				559 ε 60000		556	+	420	70	67/33 67/33					White membranes, str. JW5, 21°C. BRA cycle similar to BR (M, O). (BRA) ⁵⁵⁹ >K>(BRA) $\tau_{Kform} < 5ns, \tau_{Kdecay}$ 0.55µs; τ 1/2 Mform 20 µs, $\tau_{1/2}$ Mdecay 1.2 ms, BRA formation rate 0.9% from BR	Biochem 1987. 26(3), 751–758 Biochem 1988. 27(9). 3497- 3502 Eur. J. Biochem 1988. 176. 641–648
			all-E-					558			+	+	26			τ _{1/2}	destr	destr	destr	destr pKa Asp85 4.7

	Structure	Isomer			^λ max (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- numn	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigment	s		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
							WT 550 T90A			+	+	<10			4.1 h τ _{1/2destr} 3.7 h		CD BRA 567 (+)/ 625 (-) WT CD BRA 559 (+)/ 605 (-) T90 A	$ \begin{aligned} \tau_{1/2rec} & 12 \text{ min} \\ pK_a & Asp85 & 6.7 \\ str. & WT & and & T90A \\ No & light-dark \\ adaptation \\ T90A & and & T90A-13E- \\ RET & showed similar \\ M & intermediate \\ formation & kinetics, \\ faster & than & WT. \\ M & decay & showed & at \\ least & two & components \\ for & T90A-13E-RET \\ \end{aligned} $	PLoS One 2012 7(8) e42447
12.	Xalação	all-E-	380 ^b				545		537	+	+	40						White membranes, str. JW5, 21°C. BRA cycle similar to	Biophys. 1985 47(3) 349-355 Biochem 1988. 27(9),
																		BR. (BRA) ⁵⁵⁹ >K>L- ->M>(BRA) τ _{1/2 Mdecay} 5 ms	<u>3497-</u> <u>3502</u>
13.	X	all-E-	382	358	439		540			+		+		4260				str.353P, pH 6.5 τ _{rec} 3h 20°C	Bioorgar Khim. 1988, 14(3), 434-436 Bioorgar Khim. 1989, 15(11), 1484- 1497. Archiv. Biochem Biochem. Biophys 1990, 279(2), 225-231

	Structure	Isomer			λ _{max} (ni	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- gump	lsomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigment	s		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
14.		all-E-	380	357	439		531			+		+		3950				str. 353P, 20°C	<u>29</u>
		13Z-	376	363	444		527							3550				pH 6.5, τ _{rec} 3 days	
15.	Xadada.	all-E-	381	361	443		543			+		+		4160				str. 353P, 20°C pH 6.5, tree 6 days	<u>29</u>
		13Z-	375	364	442		547							4340				p ,	
16.	CH3 C	13Z-	360 ^b	346 ^b	360 ^b		460, 515 ε 40000		460, 515	+		2	30/70 9Z,13Z- /13Z-	6040 8360				White membranes, str. JW5, 21°C. τ_{rec} 20h, BRA cycle K ⁵⁷⁰ - decayed in biphasic mode. (BRA): τ_{1decay} 0.5 µs (67%-13Z-) and τ_{2decay} 5 µs (33%- 9Z,13Z)). τ_{rec} BRA 40 h is slower by a factor of 40 compared to 13- ethyl BR. BRA 515nm photoreversion of its blue-shifted form - 460 nm.	Biochem 1987. 26(3). 751–758 Tetrahed ron Lett. 1982. 23(36). 3673 - 3676. Liebigs Ann. Chem. 1988. (7). 705 -715. Eur. J. Biochem 1988. 176. 641–648
							520 552 544											in water. pH 7.0 pH 2.5 pH 0.5 changed to 450 nm after 60 s.	Biophys. J., 1989, 56, 1259- 1265.
																		BRA quantum-chem calculations	1985 47(3) 349-355
17.		all-E- 13Z-	274,				NO 573											str. R ₁ . 13Ζ-τ _{rec} 1h BRA undergoes very slower Irreversible	<u>J. Org.</u> Chem. 1995. 60(5).

	Structure	Isomer		2	λ _{max} (ni	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
			383ª													slowly		selfdestruction in	<u>1189 -</u>
																replaces		BRA ⁴⁰⁰ . $\tau_{1/2destr}$ 8 days	<u>1194.</u>
																vi/zrepi		Asp ²¹² . BRA ⁵⁷³ >	JACS
																		BRA ⁴⁰⁶ . Chromophore	<u>1994</u>
																		13-AcO-retinal not	<u>116(20)</u> 9383-
																		isolated and remained	9384
		1 / 3																binding to protein.	Dhatasha
		14-11-																[³ H]- 119.6 mCi/mmol	mPhotob
																		BRA nonhydrolysed	<u>iol 1999</u>
																		enamine intermediate	<u>70(4)</u> 680_685
18.	CF ₃	all-E-	390ª		460		624			+				5710				$5 \text{ min} 15^{\circ}\text{C}$	JACS
			400				-											H ⁺ pump in JW5 cells	<u>1981,</u>
																		vesicles	<u>103(25),</u> 7642
	\sim \sim																		7643
					10-														
		all-E-		367	467 pK		625 pK			+	430			5400					15,17 Retinal
					1.8		8.0												Proteins
																			<u>1987.</u>
																			<u>205–216</u> JACS.
																			1982.
																			$\frac{104(18)}{4070}$
																			<u>4979 –</u> 4981
		all-E-		367	467		625			+				5400					Photoche mPhotob
																			iol.
																			<u>1993.</u>
																			<u>58(5).</u> 701-705
																			-01 -05
		all-E-					630											pKa values of the	Biochem
1																		above two residues	<u>1995</u> 34(37)
																		are substantially	<u>12066-</u>
																		BRA, pKa (SB BRA)	<u>12074</u>
																		8.2. Data of BRA	
						I												titrations.	

	Structure	Isomer			λ _{max} (ni	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- numn	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	;		М	%	ratio	cm ⁻¹			CD	others	•
							(P)	DA	LA	1			all-E/13Z-		NH ₂ OH	all-E-RET			
		all-E-		367	467		625			+	430			5400				10 mM Hepes buffer, pH 6.5 at 25°C for 1 h. pKa (SBH ⁺) 1.8, pKa (SB BRA) 8.2	PNAS 1986. 83. 3262- 3266.
		all-E					625 JW5 625 L-07											13-CF ₃ -retinal BRA to growing JW5 and D96N (chromophore deficient strain L-07) cells,has low pK shifts to 9.1/8.1 Flash photolysis data.	Biochem 1998 37(22) 8227- 8232
																		BRA quantum-chem calculations	BiophysJ 1985 47(3) 349-355
																		Spin-labeled Pigments (BRA mutants A103C, M163C, or E74C). Reduction reaction with NH ₂ OH is light- catalyzed in the A103C-labeled pigment, but not in E74C or M163C. ESR data. BRA reduced by NABH ₄	JBiolChe m 2000 275(28) 21010- 21016
		13Z-					618											str. R ₁ M ₁ pH 7.0, 25 ^o C 10 mM HEPES buffer X-ray photoelectron spectroscopy.	JPhysSo c Japan 1984 53(10) 3321- 3323
		all-E					625											pKa (SB BRA) 7.3 At high pH, the major absorption band shifts to 440 nm.	FEBSL 1989 250(2) 179-182

Γ		Structure	Isomer		1	λ _{max} (nr	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
	No			"CHO"	SB	SBH⁺	NC	F	Pigments	S		М	%	ratio	cm ⁻¹			CD	others	
								(P)	DA	LA				all-E/13Z-	••••	NH₂OH	all-E-RET			
			all-E					624							5390					<u>Mol.</u> Cryst. Liq. 2000, 345,
			all-E					625			+	420							10 mM PIPES buffer, pH 7, pK ~ 8.4, dehydration of the sample leads to appearance of a fraction of an M-like ABR form with deprotonated SB.	317-322 Biophysi cs. 2006. 51(3). 391–398
1	19.	Kan to the second secon	all-E-	382	362	446		548							4170				str. S9	J.Org. Chem. 1997. 62(2). 310-319 Seibutsu Butsuri 2001.41(suppl). S62
4	20.		all-E-					597						90/10					τ _{decay} 10.3 ms	Seibutsu Butsuri 2001.41(suppl), S62
	21.	Br Br	all-E-	388 ε 23800		465		595		595	+				4700 4700		stable τ _{repl} >24h dark, 25°C, pH 7.0	CD BRA 560 (+)/ 632 (-)	$\begin{array}{c} \tau_{rec} 20 \text{ h, } 25^{\circ}\text{C,} \\ \text{pH 7.0.} \\ 30 \text{min} \\ \text{D <===> L} \\ 30 \text{ h} \end{array}$	JACS. 1980. 102(27), 7947 – 7949 MIE, V. 88 Part I,

		Structure	lsomer		2	[\] max (nr	n);ε(M	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- gump	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
N	0			"CHO"	SB	SBH⁺	NC	F	Pigments	S		М	%	ratio	cm ⁻¹			CD	others	1
								(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			1002
										506							atabla			<u>1982.</u> <u>178-180.</u>
			all-E-							590	T		JW 2N				Stable		pH 7.0, 22°C, BO washed by BSA BRA cycle compared to BR, but various rate constants are altered. X-ray data.	Photoche mPhotob iol 91 54(6) 873-879
			all-E-					598				+		97/3					τ _{decay} 6.1 ms	Seibutsu Butsuri 2001.41(suppl), S62
22	2.	X	all-E- 9Z-			470 ^e	440/ 500	NO	598 ε 58000	598	+	426	100 pH 6.8 60 pH 6.5	97/3 97/3	4600			CD BRA 555 (+)/ 635 (-)	BRA photointermediates $ au_{form} au_{decay}$ slightly faster than the native bR "O" 690nm X-ray data	Biophys. J. 2002, 83(6), 3460- 3469
			all-E-					598						97/3					τ_{decay} 2.7 ms	Seibutsu Butsuri 2001.41(suppl), S62
23	3.	Xadaa (13Z-	373	347	427		545		550	+	+			5070 5240				str. 353P, pH 6.5 τ_{rec} 6h, 20°C BRA cycle compared to BR. L-D adaptation decelerated.	Bioorgan Khim. 1988, 14(3), 434-436 Bioorgan Khim. 1989, 15(11), 1484- 1497,

	Structure	Isomer			^λ max ^{(nr}	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigment	s		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA					all-E/13Z-		NH₂OH	all-E-RET			Archiv. Biochem .Biophys 1990. 279(2).
24.	X ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	13Z-	325, 360				500			+								str. 353P, pH 6.5 τ _{rec} 48h 40°C At 20°C BRA doesn't formed during 10 days. BO washed by cyclodextrine solution. BRA cycle efficiency drastically degraded.	225–231 Bioorgan Khim. 1988. 14(3). 434-436 Bioorgan Khim. 1989. 15(11). 1484- 1497. Archiv. Biochem Biophys 1990. 279(2). 225–231
25.		all-E-	382	370	455		572		564	+	+ 415			4500 4250 4500				str. 353P, pH 6.5 τ_{rec} 3h 20°C No long-wave intermediates were determined in the time scales τ_{form} > 10µs $\tau_{Mdecay} \sim S$.	Bioorgan Khim. 1988. 14(3), 434-436 Bioorgan Khim. 1989. 15(11), 1484- 1497. Archiv. Biochem Biophys 1990. 279(2), 225–231 Sensors Actuator
																		mM MES, 3 mM potassium citrate, pH 6.0	2 5 1

	Structure	Isomer		2	^h max ^{(nr}	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- numn	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	s		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			39(1-3). 218-221. Mol. Cryst. Liq. Cryst 2000. 345. 317-322
26.	X ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	13Z-	392	372	461		587		581	+				4660 4480				str. 353P, pH 6.5 τ _{rec} 5 days 20°C BO washed by cyclodextrine solution. BRA cycle efficiency drastically degraded	Bioorgan Khim. 1988. 14(3). 434-436 Bioorgan Khim. 1989. 15(11). 1484. 1497. Archiv. Biochem Biochem. Biophys 1990. 279(2). 225-231
27.	Xalato,	13Z-	379	355	435		500							2990				str. 353P, pH 6.5 τ _{rec} 3h 20°C	Bioorgan Khim. 1988. 14(3). 434-436 Bioorgan Khim. 1989. 15(11). 1484- 1497. Archiv. Biochem Biochem Biophys 1990. 279(2). 225-231

		Structure	Isomer		1	^λ max (nr	n);ε(M	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
٢	No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	
								(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
2	8.	Xadaa .	13Z-	382	346	426		555			+				5460				str. 353P, pH 6.5 τ _{rec} 3 h 20°C	Bioorgan Khim. 1988. 14(3). 434-436 Bioorgan Khim. 1989. 15(11). 1484- 1497. Archiv. Biochem Biochem Biophys 1990. 279(2). 225-231
2	9.	Δ	all-E- 13Z- 11Z- 9Z- 7Z-	360° 357°			430 430 430 NO NO	530 530 NO NO NO		540	+		37	+/+ +/+					str. R1S9, 22°C in distilled water.	Recl. 1983. 102(1). 42- 46 Recl. 1983. 102(1). 46 -51
			all-E- 13Z-					540 532		548 548	+			44/56 70/30					70 mM potassium phosphate, pH 6.5.	Biochem 1983. 22(11). 2637 – 2644
			all-E-					530		540	+		68						str. S9 str. L33 W182F	Biochem Biophys. Res.Com mun. 1977. 78(2). 669-675. Biochem
																			data	<u>1995,</u>

	Structure	Isomer)	λ _{max} (nr	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Digments	s		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-	0111	NH ₂ OH	all-E-RET			
																		BRA cycle exhibits great delay in the L→M conversion Trp182 interacts with the Ret side chain through the 9-methyl group Ret	<u>34(2),</u> <u>577-582</u>
		all-E-					540 540 537			+	410	<20 WT			stable			native WT transform WT R82A str. IV-8 "O" 600 nm	The Biology Chemistr y Interface 1999 ch
																		BRA cycle at 80, 170, and 213 K. BRA cycle is slowed down about 250-fold. Low- temperature FT-IR difference spectra.	<u>Biochem</u> 1995 34(41) 13502- 13510
																		BRA cycle "M" at 410 nm and "O" 660 nm. Time- resolved UV-Vis and FT-IR difference spectra of WTBRA and mutant W182F. The steric interaction between W182 and the 9-methyl group of the retinal.	Biochem 1996 35(33) 10807- 10814
																		compared the proton uptake and release of WT and two mutant BR D96N, D85N in BRA films or L-B layers on ATO.	Bioelectr ochem 2000 51(1) 27-33 Bioelectr ochemBi

	Structure	Isomer		1	^λ max ^{(nr}	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC		Pigment	s	-	М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/132-		NH ₂ OH	all-E-RET			oenergeti cs 1997 44(1)- 37-43
30.		all-E-	369ª	357ª	426ª				530					4610					<u>Synlett.</u> 1995. (12), 1247 – 1248
		all-E	368	355	428		518							4060				str. S9	<u>J. Org.</u> <u>Chem.</u> <u>1997,</u> <u>62(2),</u> <u>310-319</u>
31.	Br C	all-E-	372 ε 39300		430			535	545	+				4570 4910		stable	CD- L- BRA 512 (+) / 590 (-) CD D- BRA 505 (+) / 585 (-)	τ _{rec} 6 h, 25°C pH 7.0 , H ₂ O 15min D <====> L 50 h	JACS. 1980. 102(27). 7947 – 7949 MIE, V. 88 Part I, 1982. 178-180. Photoche mPhotob iol 1981 33(4) 483-488
		all-E-					543	543		+	+	+++ JW2N in 4M NaCl				stable		str. ET1001 JW2N BO washed by BSA BRA cycle compared to BR, but rate constants are altered. X-ray data	Photoche m.Photo biol, 1991, 54(6), 873-879,
32.		9Z-	380 ^b				410/ 560		410/ 560									$\begin{array}{c} \tau_{rec} 50 \ h \ 20^{o} C \\ BRA \ 415 \ nm \ after \ 300 \\ min \ of \ h\nu \rightarrow BRA \ 560 \\ nm. \ 560 \ nm \ reconvert \\ thermally \ in \ 415 \ nm \\ after \ 15h \ in \ dark \end{array}$	<u>Liebigs</u> <u>Ann.</u> <u>Chem.</u> <u>1988.</u> (7), 705 - 715.

	Structure	Isomer		2	[\] max (nr	n); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- gump	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	5		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			Eur I
																			Biochem
																			<u>1988.</u> 176.
																			641-648
33.	$X \land \downarrow^{CF_3} \land \downarrow \land$	all-E-		347	399		520							5900					Photoche mPhotob
																			iol.
																			<u>1993.</u> 58(5),
																			<u>701-705</u>
																			JACS,
																			<u>1982,</u> 104(18),
																			<u>4979-</u>
																			4201
																			Tetrahed ron Lett.
																			<u>1985,</u>
																			<u>26(24).</u> 2881-
		all-E-					520												<u>2884</u>
		an- <u>-</u> -					520											Second harmonic	JACS
																		generation signal BRA	<u>2002,</u> 124(40),
																			<u>11844-</u>
34.		all-E-		364	440		573							5300					Retinal
																			Proteins
																			<u>205–216</u>
										+								Kinetics were	PNAS
																		measured at 22°C in	<u>1997</u>
																		phosphate buffer at	<u>5028–</u>
																		pH 7.0 Addition of bulk at the	<u>5033</u>
																		C9 position of Retinal	
																		does not accelerate the cvcle of BRA	
																		Leu93 →Ala mutant.	

	Structure	Isomer			λ _{max} (ni	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	S		М	%	ratio	cm ⁻¹			CD	others	-
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			
35.		all-E-		355	435		450							750					<u>Retinal</u> <u>Proteins</u> <u>1987.</u> 205–216
										+								Kinetics were measured at 22°C in 10 mM sodium phosphate buffer at pH 7.0 Addition of bulk at the C9 position of Retinal does not accelerate the cycle of BRA Leu93 \rightarrow Ala mutant.	PNAS 1997 94(10) 5028– 5033
36.	CH ₂ OH	all-E-					560			+		40 JW2N						pH 7.0, 25°C 10 mM HEPES buffer, smooth formation	JACS, 1989, 111(13), 4997- 4998.
		all-E-		351	430		571							5700					<u>Retinal</u> <u>Proteins</u> <u>1987.</u> 205–216
37.		all-E-		360	447		449							0					Retinal Proteins 1987. 205–216
38.	CH ₂ OCHO	all-E-					452											HEPES buffer, pH 7.0, 25°C in dark	J <u>ACS,</u> 1989, 111(13), 4997- 4998,
39.	CH ₂ OSO ₃ K	all-E-					NO											HEPES buffer, pH 7.0, 25°C in dark no BRA after 16-24 h	<u>JACS,</u> <u>1989,</u> <u>111(13),</u> <u>4997-</u> <u>4998</u> .

	Structure	Isomer			^λ max (n	m); ε (M	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- amuq	Isomer	OS BR	Reactio	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	(P)	Pigment	S I A		М	%	ratio	cm ⁻¹			CD	others	
40.	CH2OCOCH3	all-E-		B	-	I	452			<u> </u>			all- <u>L</u> /132-					HEPES buffer, pH 7.0, 25ºC in dark	<u>JACS.</u> <u>1989,</u> <u>111(13),</u> <u>4997-</u> <u>4998</u> .
41.	CH ₂ OCO(CH ₂) ₂ CH ₃	all-E-					452			+		12 JW2N						HEPES buffer, pH 7.0, 25ºC in dark	<u>JACS,</u> <u>1989,</u> <u>111(13),</u> <u>4997-</u> <u>4998</u> .
42.	CH ₂ OCO(CH ₂) ₃ OH	all-E-					452								0.1 M light 450nm ^{τ_{1/2destr} 5-10 min}	stable τ _{repl} >24h dark, 25 ^o C pH 7.0		HEPES buffer, pH 7.0, 25°C in dark smooth formation	<u>JACS,</u> <u>1989,</u> <u>111(13),</u> <u>4997-</u> <u>4998</u> .
43.	CH ₂ OCO(CH ₂) ₃ OSO ₃ K	all-E-					NO											HEPES buffer, in dark no BRA after 16- 24 h.	<u>JACS.</u> <u>1989.</u> <u>111(13).</u> <u>4997-</u> <u>4998</u> .
44.	CH ₂ OCO(CH ₂) ₅ OH	all-E-					452								0.1 M light 450nm ^τ 1/2destr 5-10 min	stable τ _{repl} >24h dark, 25°C pH 7.0		HEPES buffer, pH 7.0, 25°C in dark smooth formation	<u>JACS,</u> <u>1989,</u> <u>111(13),</u> <u>4997-</u> 4 <u>998</u> .
45.	CH ₂ OCO(CH ₂) ₅ OSO ₃ K	all-E-					NO											in dark no BRA after 16-24 h	<u>JACS,</u> <u>1989,</u> <u>111(13),</u> <u>4997-</u> <u>4998</u> .
46.	CH2OCO(CH2)7OH	all-E-					452								0.1 M light 450nm ^{τ_{1/2destr} 5-10 min}	stable _{τ_{repl}>24h dark, 25^oC pH 7.0}		HEPES buffer, pH 7.0, 25 ^o C in dark smooth formation	<u>JACS,</u> <u>1989,</u> <u>111(13),</u> <u>4997-</u> <u>4998</u> .

	Structure	Isomer			^λ max (n	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigment	s		М	%	ratio	cm ⁻¹			CD	others	1
47.	CH ₂ OCO(CH ₂) ₇ OSO ₃ K	all-E-					(P) 475	DA					all-E/13Z-		NH ₂ OH	all-E-RET		HEPES buffer, pH 7.0, 25⁰C in dark τ _{form} ≥6h.	JACS, 1989, 111(13), 4997- 4998.
48.	CH2OCO(CH2)9OH	all-E-					452					7 JW2N			0.1 M light 450nm τ _{1/2destr} 5-10 min	stable τ _{repl} >24h dark, 25 ^o C pH 7.0		HEPES buffer, pH 7.0, 25°C in dark smooth formation	<u>JACS,</u> <u>1989,</u> <u>111(13),</u> <u>4997-</u> <u>4998</u> .
49.	CH ₂ OCO(CH ₂) ₉ OSO ₃ K	all-E-					475					12 JW2N			0.1 M light 450nm τ _{1/2destr} 5-10 min	stable τ _{repl} >24h dark, 25°C pH 7.0		HEPES buffer, pH 7.0, 25°C in dark immediately formation	JACS <u>.</u> 1989, 111(13), 4997- 4998.
50.	CH ₂) ₁₄ CH ₃	all-E-					450	452							0.1 M light 450nm τ _{1/2destr} 5-10 min			HEPES buffer, pH 7.0, 25°C in dark	<u>JACS,</u> <u>1989,</u> <u>111(13),</u> 4997- 4998.
51.	(CH ₂) ₁₅ SO ₃ K	all-E-					475								0.1 M light 450nm τ _{1/2destr} 5-10 min	stable τ _{repl} >24h dark, 25°C pH 7.0		HEPES buffer, pH 7.0, 25°C in dark immediately formation	JACS, 1989, 111(13), 4997- 4998.
52.	CH ₂ OCO(CH ₂) ₈ CH=CH ₂	all-E-					452					10 JW2N						HEPES buffer, pH 7.0, 25°C in dark	JACS, 1989, 111(13), 4997- 4998.
53.	CH20 CH20 CH20 CH20 CH20 CH20 CH20 CH20	all-E-					450											HEPES buffer, pH 7.0, 25°C in dark	JACS, 1989, 111(13), 4997- 4998.

	Structure	Isomer			λ _{max} (n	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- numn	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigment	S		М	%	ratio	cm ⁻¹			CD	others	1
54.		all-E-					(P) 452	DA	LA			7 JW2N	all-E/13Z-		NH₂OH	all-E-RET		HEPES buffer, pH 7.0, 25°C in dark	JACS, 1989, 111(13), 4997- 4998.
55.		all-E- 13Z- 11Z- 9Z- all-E-	356° 356°			430 430 430 430	530 530 530 530	539 538 539	530 530 530 530	+		<20 WT 0 R82A			<25% in 2h pH 7.5 moderate degrada tion			str. R1S9, 22°C native WT transform WT R82A str. IV-8, pH 8.8 "M" WT quite small Only long-lived 600- nm species was found	Recl. 1983. 102(1). 42-46 Recl. 1983. 102(1). 46-51 The Biology Chemistr y Interface 1999 ch 15 431- 444
56.	X ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	all-E-	360	346	424	440	?									immediat ely replaced		str. S9 τ _{rec} 6 days 20ºC	JACS 1995 117(31) 8220- 8231
57.	X ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	all-E-	380	354	432		540							4630		immediat ely replaced		str. S9 τ _{rec} 6 days 20ºC	JACS 1995 117(31) 8220- 8231
58.	Xadada.	all-E-					+			NO		NO						BRA pigment shows no light-induced absorbance changes over the time scale of 0.1 ms to 1.0 s. Raman spectra Schiff	Photoche mPhotob iol 1985 41(5) 563-567

	Structure	Isomer		1	λ _{max} (n	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- qmuq	Isomer	OS BR	Reactio	ns with		Remarks	Ref.
N	D		"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET		base (-C=NH-) stretching frequency. 1643 cm ⁻¹	
59		all-E-	382	368	444	420	?									immediat ely replaced		str. S9	JACS, 1995 117(31) 8220- 8231
60		all-E-				420	NO												Photoche mPhotobi iol 1986 43(3) 297-303 JACS 1995 117(31) 8220- 8231
61	- Xalana	all-E-	378	366	438	420 / 440	? NO											str. S9 str. R ₁ M ₁ cells suspensions with 1 mM nicotine	JACS 1995 117(31) 8220- 8231 Biochem Soc.Tran s. 1976. 4(4), 556 - 559
62		all-E- 13Z-				410, 428, 450 370, 390, 410	NO?											Likely can form pigment with unprotonated aldimine bond	<u>JACS</u> <u>1983,</u> <u>105(15),</u> <u>5162-</u> <u>5164</u>
		all-E-		~360			425			NO								str. R1 form unprotonated SB Raman spectra Schiff base (-C=N-) stretching frequency. 1624 cm ⁻¹	Photoche mPhotob iol 1985 41(5) 563-567

	Structure	Isomer		1	λ _{max} (n	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA	1			all-E/13Z-		NH ₂ OH	all-E-RET			
		all-E-					425			NO								str. R1	Biochem 1990, 29(25)
		13Z-					423			NO									<u>5948-</u> 5953
63.	Xadado	all-E-		~ 360			433			NO								str. R1 form unprotonated SB. Raman spectra Schiff base (-C=N-) stretching frequency 1623 cm ⁻¹	Photoche mPhotob iol 1985 41(5) 563-567
64.	F F	all-E-		351	418		530		530					5000 5000					Photoche m.Photo biol., 1993, 58(5), 701-705
		all-E-			427		530		530					4550 4550				str. R1	Biochem 1990, 29(25), 5948- 5953
		ali-E-																8-F mutant D96N and str. S9 Effects of fluorinatition of the retinal polyenic chain on the influence protein-lipid interaction	<u>Eur.</u> <u>Biophys.</u> J., 2001, <u>29(8)</u> <u>628–640</u>
65.	X ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	all-E		364	438		562							5000					Photoche m.Photo biol., 1993, 58(5), 701-705
		all-E- 13Z-			442		431, 565 557			+	410	+		4930 4670				str. R1. "O" -650 nm	Biochem 1990, 29(25), 5948- 5953

	Structure	Isomer	λ _{max} (nm); ε (M ⁻¹ cm ⁻¹)							Photo	cycle	H⁺-	Isomer OS E	OS BR	Reactions with		Remarks		Ref.	
No			"CHO"	SB	SBH⁺	NC	Pigments				М	%	ratio	cm ⁻¹			CD	others	-	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			-	
																		10-F mutant D96N and str. S9 Effects of fluorinatition of the retinal polyenic chain on the influence protein-lipid interaction	Eur. Biophys. J., 2001, 29(8) 628–640	
66.		all-E-	370	354	434		540							4520				str. S9	<u>J. Org.</u> <u>Chem.</u> <u>1997,</u> <u>62(2),</u> <u>310-319</u>	
67.	X ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	all-E-		365	450		591							5300					Photoche m.Photo biol., 1993, 58(5), 701-705	
		all-E-			447			566, 591						4700 5450				str. R1	<u>Biochem</u> 1990, 29(25), 5948- 5953	
																		12-F mutant D96N and str. S9 Effects of fluorinatition of the retinal polyenic chain on the influence protein-lipid interaction	Eur. Biophys. J., 2001, 29(8) 628–640	
68.		all-E-	372	355	429		520							4080				str. S9	<u>J. Org.</u> <u>Chem.</u> <u>1997,</u> <u>62(2),</u> <u>310-319</u>	
69.		all-E- 13Z-			466	450	600 600			+	420	+		4790				str. R1	Biochem 1990, 29(25), 5948- 5953	
		Structure	Isomer			^λ max (nr	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
----	----	---------------------------------------	--------	-------	-----	----------------------	----------	----------------------------------	---------------	-------------	-------	-------------	-----	---------------------------	------------------------------	--------------------	-----------	----	---	--
N	lo			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	
								(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
7().	K K K K K K K K K K K K K K K K K K K	all-E-		368	459		587 680sh					+		4900 7300					Photoche m.Photo biol., 1993, 58(5), 701-705
			all-E-			455	440	587, 680sh	587, 680sh	587, 680		410- 415		55/45 95/5	4940 7270 4940 7270				str. JW2N pH 6.0, 25 ^o C For 13Z- τ _{rec} BRA587 <1 min After 1h in dark slight decrease BRA587 formed 680sh	Biochem 1990, 29(25), 5948- 5953
			13Z-					587	587, 680sh	587, 680				trace/99 55/45 93/7					For all-E- 440-nm NC τ_{rec} <1 min τ_{rec} BRA587 1h, hv λ >560 nm BRA587 \rightarrow 680sh nm grows. Cycle "O"-690-700 nm $\tau_{dec1/2}$ 100ms "M" 410-415 nm $\tau_{decM1/2}$ 30 ms	
																			Spin-labeled Pigments (BRA mutants A103C, M163C, or E74C). Reduction reaction with NH ₂ OH is light- catalyzed in the A103C-labeled pigment, but not in E74C or M163C. ESR data. BRA reduced by NABH ₄	JBiolChe <u>m 2000</u> 275(28) <u>21010-</u> 21016
																			Dynamic holography recording using 14- FBRA in gelatin films.	Photoche mPhotob iol 2005 81(4) 920-923
			all-E-					588											str. WT ET-1000 and D96N pH 6, 25⁰C,	<mark>BBA</mark> 1998

	Structure	Isomer			λ _{max} (n	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-	om	NH ₂ OH	all-E-RET			
		13Z-					587											BRA from all- <i>trans</i> - and 13- <i>cis</i> -14-F- retinal analogs. τ_{rec} 1h from WT ET- 1000 or D96N BR and no red tail band was formed! After 560 nm light in 5 min illumination, pH 7, 10°C, BRA640-650 nm band appear for both the 14-F WT and D96N BRA. The photocurrent transients generated by yellow light in 14-F- WT and 14-F-D96N unoriented films on tin-oxide electrodes were measured.	1 <u>371(2)</u> 371-381
																		Spectral and kinetic transformations were studied in gelatin films made with 14-F WT 14-F D96N BRA Photoinduced transformation in gelatin films made with 14-F BRA, both WT and D96N mutant, were studied. Spectral and kinetic peculiarities for these two types of samples were compared over a wide range of relative humidity (9–92%). Spectral and kinetic characteristics were	Bio Systems 2001, 59(1), 53-60 Appl.Bio chem.Bi otechnol. 2005, 120(2), 121-132
																		films based on14-F	<u>ymer</u> 2008 19(12)

	Structure	Isomer			^λ max (nr	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
																		(WT) and D96N mutant, to study the peculiarities of photo- induced transformation of the samples.	<u>1585-</u> <u>1595</u>
		all-E-	394ª		455		587 680sh							4800 7100					Photoche mPhotob iol 2001 74(6) 837–845
																		14-F mutant D96N and str. S9 Effects of fluorinatition of the retinal polyenic chain on the influence protein-lipid interaction	Eur. Biophys. J., 2001, 29(8) 628–640
																		effect of high pressure on ABR, BR mutant D96N and fluoroABR	EurBiop hysJ. 2002 31(7) 539-548
71.		all-E-		371	426		NO												Photoche mPhotob iol., 1993, 58(5), 701-705
72.	CI CI	all-E- 13Z-					440- 475, 691 430 691	691					after 5 days 61/39 after 5 days 55/45					str. JW2N pH 6.0 25°C τ_{rec} BRA440-475 1 h τ_{rec} BRA691 5 days ~ 5% BRA691 after 5 days	Biochem 1990, 29(25), 5948- 5953
		all-E-	396ª		461		472/ 691							500 7200					Photoche mPhotob iol 2001

	Structure	Isomer			λ _{max} (n	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC		Pigments	S		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			74(6) 837–845
73.		all-E-					NO												<u>10</u>
74.		all-E-				+	NO												<u>29</u>
75.		11Z-	364				532												<u>Eur. J.</u> <u>Biochem</u> <u>1988.</u> <u>176,</u> <u>641–648</u>
76.		11Z-	366				534												<u>Eur. J.</u> <u>Biochem</u> <u>1988.</u> <u>176.</u> 641–648
77.	OCH3	13Z-	347				490												<u>Eur. J.</u> <u>Biochem</u> <u>1988.</u> <u>176.</u> 641–648
78.		all-E-																Spin-labeled Pigments (BRA mutants A103C, M163C, or E74C). Reduction reaction with NH₂OH is light- catalyzed in the A103C-labeled pigment, but not in E74C or M163C. ESR data. BRA reduced by NABH₄	JBiolChe m 2000 275(28) 21010- 21016
79.		all-E-																Spin-labeled Pigments (BRA mutants A103C, M163C, or E74C).	JBiolChe m 2000 275(28)

	Structure	Isomer			^λ max (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
																		Reduction reaction with NH ₂ OH is light- catalyzed in the A103C-labeled pigment, but not in E74C or M163C. ESR data. BRA reduced by NABH ₄	21010- 21016
80.		9Z,13Z-	352				500												<u>Eur. J.</u> <u>Biochem</u> <u>1988.</u> <u>176.</u> 641–648
81.		9Z-	376				$\begin{array}{c} 490\\ \text{in}\\ \text{H}_2\text{O}\\ 510 \text{ in}\\ \text{cells} \end{array}$					10						str. JW2N	<u>Eur. J.</u> <u>Biochem</u> <u>1988.</u> <u>176,</u> <u>641–648</u>
82.	$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	all-E-																Spin-labeled Pigments (BRA mutants A103C, M163C, or E74C). Reduction reaction with NH ₂ OH is light- catalyzed in the A103C-labeled pigment, but not in E74C or M163C. ESR data. BRA reduced by NABH ₄	JBiolChe m 2000 275(28) 21010- 21016
83.	X ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	all-E-	291 ^c ε 34100 293 ^a			331 ε 29000	NO											No covalent binding. Possible iinteraction between C18 fragment and some groups in protein microenviroment. τ_{rec} 6 min. Iminoester formation? If PM instead BO λ_{max} 302 nm	Photoche m.Photo biol. 1992. 55(5). 745-752.

	Structure	Isomer		î	^λ max (ni	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- numn	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
84.		all-E-				440	532			+		45	70-90%E					H ⁺ pumping in str. JW-	JACS.
		137-					515			+								5 cells	$\frac{1984}{106(19)}$
							0.0												<u>5654-</u>
																			<u>5659</u>
85.		all-E-	290sh	343	418		539			+	~410			5370					<u>Bioorgan</u>
			364																Khim.
			ء 26100																<u>1989,</u>
		107		a (=			- 10							1=10					<u>15(3).</u>
		13Z-	288sh	347	417		519			+				4710					<u>307-312</u> Biolog
			ε ε																Memran
			20300																<u>es (Rus),</u>
		97-				+													$\frac{1994}{11(5)}$
		02																	<u>575-576</u>
		9Z,13Z-					495			+									Molecul
		7Z- 77 97-				NO													ar Biol.
		7Z,13Z-				NO													<u>1995,</u>
																			<u>29(6),</u>
																			<u>1398-</u> 1407
																			Mol.
																			Cryst.
																			Liq. Cryst
																			2000,
																			<u>345,</u>
86.		all-F-					NO												<u>10</u>
00.																			<u></u>
87.		all-E-					+					+							Pure
												10-15							Appl.
																			<u>Chem.</u> , 1986
	以 人																		<u>58(6),</u>
1							1									1			<u>719-72</u> 4

	Structure	Isomer			λ _{max} (nr	n);ε(Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reactior	is with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	w %	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-	•	NH₂OH	all-E-RET			
88.		all-E-	342		392		440							2780					Biophys. J. 1986. 49, 479- 483
		all-E-			390		442	442	440				77/23 51/49	3000 2900				50 mM Hepes, pH 7.0	Photoche mPhotob iol 1991 54(6) 969-976
		all-E-					400												10
		all-E-	338		385		400							1000					JACS. 1980. 102(27), 7945 - 7947
		all-E-			385			400						1000					Photoche mPhotob iol 1981 33(4) 483-488
		all-E-	340		385		445							3500				H₂O, pH 7.0	JACS 1986 108(11) 3104- 3105
		all-E-					448												<u>BiophysJ</u> <u>1984 45</u> <u>272a</u>
		all-E-			392		440					NO		2780					Pure Appl. Chem., 1986, 58(6), 719-724
		all-E-					440											in water. pH 7.0	BiophysJ 1989

ſ		Structure	Isomer		2	max (ni	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
	No			"CHO"	SB	SBH⁺	NC	F	Pigments	S		М	%	ratio	cm ⁻¹			CD	others	
L								(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			500
								455 455											рн 2.5 pH 0.5	<u>56(6)</u> <u>1259-</u> <u>1265</u>
			all-E-	342ª				440											Protein- <i>b</i> -lonone Ring Interactions. Second harmonic generation (SHG) to probe the light-induced dipolar changes.	JPhysCh em_B 2003 107(25) 6221- 6225
:	89.	X	all-E-	284		322			343	325					1910 300					Biophys. J. 1986. 49, 479- 483
			all-E-			322		325							300					Photoche mPhotob iol 1981 33(4)
			all-E-	278		322		325											phosphate buffer, pH 7.0.	<u>JACS.</u> <u>1980.</u> <u>102(27),</u> <u>7945 -</u> <u>7947</u>
			all-E-					+	343				NO		1910					Pure Appl. Chem., 1986, 58(6), 719-724
			all-E-					335												<u>BiophysJ</u> 1984 45 272a
1	90.	X	all-E-	236		270		+											λ_{max} BRA overlap with the absorption of the protein.	Photoche mPhotob iol 1981 33(4) 483-488

	Structure	Isomer		2	∿ _{max} (nr	n);ε(Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			
																			JACS. <u>1980.</u> <u>102(27),</u> <u>7945 -</u> <u>7947</u>
91.	X	all-E-	289ª				328							4110				in 20 mM Tris/HCl and 4 M NaCl at pH 7.0. BRA ³²⁸ with distinct vibrational fine structure. τ_{rec} 45 min Mutagenesis studies and two photon spectroscopy studies argue against a discrete charge in the binding site but not against the local electrostatic fields, which would fulfill the conditions of the original point charge model. 270-fold inhibition of the native retinal Incorporation in BRA.	JBiolChe m. 1995, 270(50), 29668- 29670
92.	X	all-E-	339		392 382		435	438	436				61/39 40/60	2520 3350 3200				50 mM Hepes, pH 7.0.	Biophys. J. 1986. 49, 479- 483 Pure Appl. Chem., 1986, 58(6), 719-724 Photoche mPhotob iol 1991 54(6)
┣—				E.	Altera	ation of	the pol	yenic cl	hain len	gth and	bond di	spositio	on and termi	nal grou	p types				<u>969-976</u>

	Structure	Isomer			λ _{max} (n	m); ε (Ν	1 ⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC		Pigment	S		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			
93.						NO	NO											str. R ₁ M ₁ 5ºC	Eur. J. Biochem 1981, 117(2), 353-369
94.	X ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	E-	225°			NO	NO		NO									In 50 mM sodium phosphate buffer pH 7.2. 24 h	Biochem <u>1986,</u> <u>25(8),</u> <u>2022-</u> <u>2027.</u> 18
95.		E-	222, 292 ^b			NO	NO		NO									str. R ₁ M ₁ 5ºC	Eur. J. Biochem <u>1981,</u> <u>117(2),</u> 353-369
96.	Xxxx.	E-	232			NO	NO		NO									str. R₁M₁ 5ºC	<u>Eur. J.</u> <u>Biochem</u> <u>1981,</u> <u>117(2),</u> <u>353-369</u>
97.		all-E- 9Z-	264, 330 ^b 266, 320 ^b			346 344	NO NO											str. R₁M₁ 5ºC	Eur. J. Biochem 1981, 117(2), 353-369
98.		all-E- 9Z-	264, 330 ^b 266, 326 ^b			350 352	NO		NO						unstable, destroyed very rapidly			str. R ₁ M ₁ 5ºC	Eur. J. Biochem 1981, 117(2), 353-369
		all-E-	326ª			364											364+		Bioorgan
		9Z-	323ª			362											362+		<u>Khim.</u> (<u>Rus),</u> <u>1981,</u> <u>7(8),</u> <u>1169-</u> <u>1194</u>
		all-E- 97-	280			360 359													Photoche m.Photo biol., 1981

	Structure	Isomer			λ _{max} (ni	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- gump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	S		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			<mark>33(4),</mark>
99.		all-E-	252, 306 ^b			324	NO											str. R ₁ M ₁ 5ºC	495-499 Eur. J. Biochem
																			<u>1981,</u> <u>117(2),</u> 353-369
100.		all-E-	350 ^b			420									unstable			str. R ₁ M ₁ 5°C	Eur. J.
		9Z-	322 ^b			380													<u>1981,</u> <u>117(2),</u> <u>353-369</u>
		all-E-	340ª ε			413 ε									unstable			str. R ₁	Photoche m.Photo
		11Z-	33200 323ª			40000 400													<u>biol.,</u> 1981.
		9Z-	336ª			402									unstable				<u>33(4),</u> 495-499
			29000			30000													
		all-E-	340ª					413	415	NO	NO								<u>18</u>
101.	CN CN	all-E-	328⁵			366	NO											str. R₁M₁ 5ºC	Eur. J. Biochem 1981,
																			<u>353-369</u>
102.	Xadad	all-E-	352 [⊳]			414	NO											str. R ₁ M ₁ 5°C	Eur. J. Biochem
		9Z-	302, 344			344													<u>1981,</u> <u>117(2),</u> <u>353-369</u>
		all-E-				+													FEBS Lett., 1979,
																			97(1), 15-19.

		Structure	Isomer		2	^λ max (nr	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	ocycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No)			"CHO"	SB	SBH⁺	NC	P	Pigments	S		М	%	ratio	cm ⁻¹			CD	others	1
								(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			
10	3.	$X \land \downarrow \land \downarrow$	all-E-	284°			328	NO									328 nm			Photoche m Photo
				。 33000,													moves to			biol.,
		\sim		284ª													300 nm, when all-			<u>1992,</u>
																	E-Ret			<u>745-752.</u>
10	4	<u> </u>	-	2006				440		-	NO		NO			atabla	added		In 50 m Maadium	D' I
10	4.	$X \land \land \land \circ$	E-	320°				416		420	NO		NO			stable	stable		phosphate buffer pH	1986,
			2Z-	318°				414			NO					stable	stable		7.2. 24 h	25(8),
		\checkmark '								420										<u>2022-</u> 2027
10	5		67-	378°			100	51/ch								stable by			stable under	18 Tetrahed
10	5.	X	02-	570			403	514311								Stable IIV			illumination.	ron Lett.,
																			Isomerisation to E-	$\frac{1991}{22(17)}$
		\sim \sim																	Isomer Trec 14 days	<u>1933-</u>
	-			0700				- 10												<u>1936</u>
10	6.		all-E-	378°			449	542								stable hv			stable under illumination τ_{res} 11	Tetrahed ron Lett
																			days	<u>1991,</u>
		\checkmark																		<u>32(17),</u> 1933-
																				<u>1936</u>
10	7.		Z-	400 ^c				579								unstable			destroyed under illumination τ 1 day	Tetrahed
																ΠV			indimination. trec i day	<u>1991,</u>
		VT.																		<u>32(17),</u>
																				<u>1935-</u> 1936
10	8.		E-	400°				NO												Tetrahed
																				ron Lett., 1991,
		VT I																		32(17),
		,																		<u>1933-</u> 1936
10	9.	V	E-	334°				458			+	355-	+			stable	easy		In 50 mM sodium	Biochem
			27-	332°				455		463		360				τ _{1/2destr} 70 min	replaced		phosphate buffer pH	$\frac{1986}{25(8)}$
		\checkmark ' '		002				100		463									low yield. $\tau_{1/2\text{Mdecay}}$	<u>2022-</u>
																			11ms.	<u>2027.</u>

	Structure	Isomer)	راسه (n	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	
		- 11 / 15	00.43				(P)	DA	LA	1	057		all-E/13Z-		NH₂OH	all-E-RET			10
		all-⊵-	334ª					458	463	+	357	+							18
			_																
110		all-E-					528		535										<u>29</u>
111		F-	382°				518			+	395	+++			stable	stable		In 50 mM sodium	Biochem
		_	002				010		524		000				τ _{1/2destr}	otable		phosphate buffer pH	<u>1986,</u>
		2Z-	380°				517		524						several			7.2. 24 h τ _{1/2rec} 2 min	<u>25(8),</u> 2022-
		6Z-	375°				485								nouro			τ _{1/2Mdecay} 11ms	<u>2027.</u>
		all-F-	382ª					518	524										18
			002					0.0	524	+	392	+++							
112		all-E-	308	376	458	430-	555			+				3810				str 353P	29
112		an-L-	ε	010	400	460	000			l'				5010				50.0001	
			45000																
		all-E-	392ª				~520			-		-			unstable,	stable		H⁺-pump in egg	Biophys.
							broad sh								stepwise			lecithin vesicles. The	<u>J., 1977,</u> 19, 191,
		13Z-	396ª				511.			-					destruction			bound in BRA. $\tau_{rec} 2 h$	<u>198</u>
		all-F-	384°					500	500	+	400	++			unstable	unstable		30 mM sodium	Photoche
			004					540sh	540		100				5 mM in	anotabio		phosphate buffer, pH	mPhotob
															dark			7.0. Two distinct BRA	$\frac{1011986}{43(3)}$
																		which can interconvert	<u>297-303</u>
																		with each other upon	18
																		of pH of the medium.	
																		Long irradiation with	
																		of BRA. Reversible L-	
																		D conversion 540	
																		pH \rightarrow 500 nm.	
113	X	all-E-					NO											str. R ₁ M ₁ cells	Biochem
																		mM nicotine	<u>s. 1976.</u>
																			4(4), 556
										1									<u>- 339</u> .

	Structure	Isomer			λ _{max} (n	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- amua	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	s		М	%	ratio	cm ⁻¹		1	CD	others	1
							(P)	DA	LA	1			all-E/13Z-		NH₂OH	all-E-RET			
		all-E-	400				460sh 523		460sh 527									str 353P	<mark>29</mark>
114.	Xalalada.	all-E-					NO											str. R ₁ M ₁ cells suspensions with 1 mM nicotine	Biochem Soc.Tran s. 1976. 4(4), 556 - 559.
		4			F.	Altera	tion or l	ocking	of the bo	ond con	figurati	on. Non	-isomerizabl	e analog	s				
115.	X	all-E-	384	360	448		570		570	+	410	+++	50/50 90/10	4800 4800				Hepes buffer, pH 6.5 τ _{rec} 30 min. BRA cycle compared to BR. Short-lived "K", long- lived "M". No observed light-dark adaptation. H ⁺ -pump in in vesicles.	Retinal Proteins 1987. 205–216 JACS 1986 108(15) 4614- 4618
		all-E-					567			+	+		100/0					Leu93X mutants. Leu93 τ _{Mdecay} 1.1ms	PNAS 1997
							538			+	+		100/0					τ _{Odecay} 5ms Leu93→Ala τ _{Mdecay} 0.9ms τ _{Odecay}	<u>5028–</u> 5033
							540			+	+		100/0					3.4 ms. Leu93→Thr	
							564			+	+		100/0					Leu93 \rightarrow Val + τ_{Mdecay} 2.2ms τ_{Odecay} 6.2 ms in 10mM sodium phosphate buffer at pH 7.0 22°C. Laser- induced transient spectra. Leu93 \rightarrow Ala dramatic acceleration 550-fold in the decay of the "O". Leu93 \rightarrow Thr 150-fold increase lifetime of "O". Leu93 \rightarrow Val	

	Structure	Isomer			λ _{max} (nr	m); ε (M ⁻	¹ cm ⁻¹)			Photo	cycle	H ⁺ -	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6	1	М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA					all-E/13Z-		NH₂OH	all-E-RET		mutant has little effect on the lifetime of the "O".	
																		BRA 200 ps cycle is tested by both ps absorption and vibrational spectroscopy. Time constant J> K 5 ps	J. Phys. Chem. 1995, (19), 7801- 7805.
																		BRA picosecond resonance coherent anti-Stokes Raman scattering (PR/CARS) and PTA data. Picosecond transient absorption (PTA) data show that the initial 200-ps interval of the BRA photocycle contains two intermediates: "J6.9" formed with <3-ps time constant and decaying to "K6.9" with a 5-ps time constant ("K6.9" has a >5-ns lifetime). Data show that no C13=C14	IPhysCh em A. 2002 106(14) 3325- 3336
																		isomerization is needed to form "K6.9", even though BRA exhibits biochemical activity and the structure of BRA permits C13=C14 isomerization, it is evident that the biochemical mechanism in BRA, unlike native BR, proceeds with a "K-	

	Structure	Isomer		2	Max (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	;		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
																		intermediate" that can undergo C13=C14 isomerization, but does not. It is possible, of course, that C=C isomerization (either at the C13=C14 bond or at another C=C bond occurs later in the BRA photocycle, New model of the primary events of the BR photocycle. Picosecond intermediates appearing in the respective photo- reactions BRA are measured by coherent anti-Stokes Raman spectroscopy (CARS).	<u>Chem</u> <u>Physics</u> 2005. 313(1- 3), 51- 62.
		all-E-					572											PR/CARS and PTR/CARS data measured from the sample BRA.	JPhysCh em A 2003 107(49) 10787- 10797
110		all-E-	379ª	365ª	435ª		540sh 565			+				4470 5290				20mM HEPES, pH 7.0. BRA cycle compared to BR. Short-lived "K", "L".	Biochem 1985. 24(5), 1260 - 1265
		all-E-		364	435		570							5450					Retinal Proteins 1987. 205 – 216

	Structure	Isomer			λ _{max} (nr	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- amuq	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	S	1	М	%	ratio	cm ⁻¹			CD	others	
		all-E-			435		(P) 570	DA	LA				all-E/132-	5400	NH₂OH			pKa (SBH ⁺) = 6.7, pKa (BRA SB) = 9.1. Titrations of BRA data	Biochem 1995, 34(37), 12059- 12065
117.		all-E-	386ª	364ª	442ª		540sh 576			NO				5260				20mM HEPES, pH 7.0.	Biochem 1985. 24(5), 1260 - 1265
118.	X	all-E- 13Z-	330 ^b € 20000 305 ^b		380 ^b ε 26320 365 ^b	+	490 ε 20410 NO		490			0		5910 5910					<u>Angew.</u> Chem. 1984. 96(1), 76 –78
		7Z- all-E-	323 ^b		372 [⊾]	+	NO 490 ε 31000					NO	100/0					str. R_1M_1 . BRA does not isomerize. λ_{max} flu 605 nm. Φ 1.2-10 ⁻³ . "K" is not formed and no rotation in the region of C-12-C-14 of BRA.	BBA <u>1984.</u> 767(3). 635-639
119.	Xadar.	all-E-	411ª		475ª		608					0		4610		stable		str. R1S9 τ _{rec} 14 days No L-D-adaptation.	<u>Recl.</u> 1994, 113(1), 45-52.
		all-E-	410	472	460	443	608							5290				str. 353P	<u>Kirillova</u> <u>Yu.G.</u> <u>Ph.D.</u> <u>thesis,</u> 1994
120.	Xadado.	all-E-	411ª		480ª		624 ε 63000					45		4810		stable		str. R1S9 τ _{rec} 30 min	<u>Recl.</u> 1994, 113(1), 45-52.
		all-E-	410	385	485	487	624	608	624	+	+	+		4590 4170 4590				str. 353P	<u>Kirillova</u> Yu.G. Ph.D.

	Structure	Isomer			λ _{max} (ni	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	ŀ	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			thesis,
121			2058		4668		NO											atr. D150	<u>1994</u>
121.		a⊪-⊏-	395-		400-		NO											SU. K159	<u>113(1)</u>
																			<u>45-52.</u>
		all-E-	393	371	460	420	NO			NO								str. 353P	Kirillova Vu G
																			Ph.D. thesis.
122.		all-E-	395ª		466ª		NO											str. R1S9	1994 Recl.
																			<u>1994,</u> 113(1),
																			<u>45-52.</u>
		all-E-	393	355	485	428	NO			NO								str. 353P	<u>Kirillova</u> <u>Yu.G.</u>
																			<u>Ph.D.</u> thesis,
123.		E-	336	324	390	325,	NO			NO								str. R1, 50mM MES,	<u>Bioorgan</u>
						425												destroyed by Ag ⁺ /	$\frac{\text{Knim.}}{(\text{Rus}),}$
																		keton easy replaced	$\frac{1984}{10(2)}$
																			Bioorgan Khim
																			(Rus), 1987,
																			<u>13(8).</u> 1116-
																			<u>1124</u>
		E-	337			428	NO											str. R1S9	<u>Recl.</u> 1984
		9Z-	332			NO	NO												<u>103(4)</u> 105-109
124.		E-	265, 295			343, 360	NO			NO								str. R1, 50mM MES, pH 6.5. 24h. NC easy	<u>Bioorgan</u> Khim.
																		destroyed by Ag ⁺ / Triton X-100. C18-	<u>(Rus),</u> 1987,
																			13(8),

	Structure	Isomer		2	^λ max (nr	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	is with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	S		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET		keton easy replaced NC	<u>1116-</u> 1124
125.		E-	356			407, 427	NO			NO								str. R1S9	Recl. 1984 103(4) 105-109
126.		E-	362			400, 423	NO			NO								str. R1S9	Recl. 1984 103(4) 105-109
127.		E-	351			399, 424	NO			NO								str. R1S9	Recl. 1984 103(4) 105-109
128.		E-	377			430	NO											str. R1S9	Recl. 1984 103(4) 105-109
129.		all-E- 9Z-	233, 355° 242, 290, 355°			435 NO	565		565			11		5290				str. R1S9	Recl. 1983 102(1) 42-46 Recl. 1983 102(1) 46-51
		all-E-	375ª	367ª	436ª		565			NO				5240				20mM HEPES, pH 7.0.	Retinal Proteins 1987. 205-216 Biochem 1985. 24(5). 1260 - 1265
		all-E-			436		568							5300				pKa (SBH⁺) 6.0, pKa (BRA SB) 8.2.	Biochem 1995,

	Structure	lsomer)	^λ max (nr	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- numn	Isomer	OS BR	Reaction	is with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			
																		Titrations of BRA data	<u>34(37),</u> <u>12059-</u> <u>12065</u>
		all-E-																pKa (BRA SB) 8.2. Titrations of BRA data	Biochem 1995 34(37) 12066- 12074
															$\begin{array}{l} \tau_{1/2 destr} 330 \\ s \ in \ the \\ dark \\ \tau_{1/2 destr} 778 \\ s \ under \\ light \end{array}$			Light-Induced NH ₂ OH reactions occur with SB C13= C14 locked BRA	Biophys J 1998 75(1) 413-417
																		step-scan FT-IR data	LaserCh em 1999 19(1-4) 169-172
																		str. WT Electric-Field Effects in BRA films	Photoche mPhotob iol 1999 70(1) 103-110
																		Atomic force sensing (AFS) for dynamically probe BRA protein conformational changes with microsecond time resolution	<u>PNAS</u> 1997, 94(15), 7937- 7941
																		Spin-labeled Pigments (BRA mutants A103C, M163C, or E74C). Reduction reaction with NH ₂ OH is light- catalyzed in the A103C-labeled pigment, but not in	JBiolChe m 2000 275(28) 21010- 21016

Γ		Structure	lsomer			λ _{max} (n	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
I	No			"CHO"	SB	SBH⁺	NC	F	Pigment	S		М	%	ratio	cm ⁻¹			CD	others	1
								(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
																			E74C or M163C. ESR data.	
1	130.	χ	all-E- 13Z-	384	366	438	440	525			NO		NO	0/100	3780				Hepes buffer, pH 6.5. NC 440nm τ_{rec} 20 min BRA τ_{rec} 48 h in dark. 13Z form BRA 525 in τ_{rec} 20 min. BRA525 photocycle lacks the "M", long-lived redshifted species, "L ₆₁₀ " as in BR13-cis. In NC 440 nm no photocycling was observed.	Retinal Proteins 1987. 205 - 216 JACS 1986 108(15) 4614 4618
			all-E- all-E-			438		524 560 560 522							3780				in water. pH 7.0 pH 2.5 pH 0.5 pKa (SBH*) = 7.3,	BiophysJ 1989 56(6) 1259- 1265 Biochem
																			pKa (BRA SB) = 12.0. Titrations of BRA data	<u>1995,</u> <u>34(37),</u> <u>12059-</u> <u>12065</u>
1	131.	X	all-E-	378	358	436		556		556	+	410	+++	50/50 90/10	5000 5000				Hepes buffer, pH 6.5 τ _{rec} 30 min. BRA cycle compared to BR. Short-lived "K", long-lived "M". No observed light-dark adaptation. H*-pump in in vesicles.	Retinal Proteins 1987. 205–216 JACS 1986 108(15) 4614 4618 BiophysJ
																			BRA. BRA laser- induced transient	<u>1993</u> 65(2)

	Structure	Isomer			λ _{max} (n	m); ε (M	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reactio	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Piaments	3		М	pump %	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-	GIII	NH₂OH	all-E-RET			
		all-E-					556 530 532 552			+t + + +			100/0 100/0 100/0 100/0					picosecond absorption and picosecond time- resolved fluorescence spectra. Differences including slower formation rates for"J" $_{610 \text{ nm}}$ and "K1", soom as well as the presence of a second "K2" $_{650 \text{ nm}}$ Restricted motion in the C11=C12-C13 region of retinal found in BRA does not greatly change the overall photoreaction mechanism, but does alter the rates at which processes occur. Resonance Raman spectrum. Leu93X mutants. Leu93 TMdecay 0.6ms todecay 4 ms Leu93 TMrtMdecay 0.7ms todecay 15ms Leu93 →AlatMdecay 0.7ms todecay 5.3ms. In 10 mM sodium phosphate buffer at pH 7.0 22°C. Laser- induced transient spectra. Leu93 →Val, Leu93→Ala mutants, BRA accelerates decay of the "O" by 2- fold and 120-fold, respectively.	964-972 PNAS 1997 94(10) 5028- 5033
		all-E-					556											str. S9. In water	JPhysCh

	Structure	Isomer		í	λ _{max} (n	m); ε (M	⁻¹ cm ⁻¹)		Photo	cycle	H⁺-	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
No			"CUO"	<u>ep</u>	SDU+			Diamonte		М	pump	ratio	_1		1	CD	othoro	4
NO			СПО	30	зып	NC			4	IVI	70		cm ⁻ '			CD	outers	
												all-L/132-					without buffer pH 6.5. Resonance Raman spectrum	em 1993 97(47) 12416- 12422
		all-E-			436		556						5000				pKa (SBH ⁺) = 7.2, pKa (BRA SB) = 12.1. Titrations of BRA data	Biochem 1995, 34(37), 12059- 12065
																	New model of the primary events of the BR photocycle. Picosecond intermediates appearing in the respective photo- reactions BRA are measured by coherent anti-Stokes Raman spectroscopy (CARS).	Chem <u>Physics</u> <u>2005</u> , <u>313(1-</u> <u>3), 51-</u> <u>62</u> ,
		all-E-					556										PR/CARS and PTR/CARS data measured from the sample BRA. The significantly slower rate (τ 12-16 ps) for the "J" to "K" transformation in BRA relative to that in BR- 570 (3.5 ps) directly reflects the time required for trans to cis isomerization of the C13=C14 bond. The decreased isomerization rate in BRA arises from the proximity of the ring to the C13=C14 bond, which increases inertia near the C13=C14 bond and	JPhysCh em A 2003 107(49) 10787- 10797

	Structure	Isomer			^λ max (nr	n);ε(M⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			
																		introduces new steric	
																		the ring and amino	
																		acid residues. As a	
																		consequence, the rate	
																		motion is converted	
																		into isomerization of	
																		the C13=C14 bond	
132		all-E-	381ª		464ª		NO											str. R1S9	Recl.
																			<u>1994,</u>
																			<u>113(1).</u> 45-52
		all-E-	391	363	440	430	562			NO		NO		4930				str. 353P	Kirillova Vu G
																			Ph.D.
																			thesis,
133		all-E-				420sh	576	576				NO		4140		displaced		Tree 15 days 10mM	JACS
						443,						_		-				HEPES, pH 7.0.	<u>1983</u>
						470sh													$\frac{105(15)}{5162}$
																			<u>5162</u>
																			<u>19</u>
		all-E-					576												Biochem
																			<u>1990</u>
																			<u>29(25)</u> 5948-
																			<u>5953</u>
		all-E-				439	555	555	555	NO		NO			liaht-			τ 12 days	L Biol
		<u>-</u>													induced			BO expressed in E.	Chem.,
															reaction			coli (ebO). Reaction	$\frac{1992}{267(10)}$
															τ _{1/2destr} oo min:			with NH ₂ OH in the	<u>267(10),</u> 6757-
															in the dark			were similar.	<u>6762</u>
															τ _{1/2destr} 81 min				
																		C13=C14 locked BRA	Biochem M 2001
																		tested an early	<u>66(11)</u>

	Structure	Isomer		2	^λ max ^{(nr}	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA	1			all-E/13Z-		NH ₂ OH	all-E-RET			
																		with subpicosecond time resolution. BRA cycle lack the characteristics of native bR cycle, "I" BRA exhibit long lived decays of 18 ps, regenerating their original ground state.	<u>1210-</u> 1219
															$\begin{array}{l} \tau_{1/2 destr} 846 \\ s \ in \ the \\ dark \\ \tau_{1/2 destr} 375 \\ s \ under \\ light \end{array}$			Light-Induced NH ₂ OH reactions occur with SB C13= C14 locked BRA	Biophys J 1998 75(1) 413-417
		all-E-				464	574							4250				pKa (SBH ⁺) 7.3, pKa (BRA SB) 11.5. Titrations of BRA data	Biochem 1995, 34(37), 12059- 12065
																		step-scan FT-IR data	LaserCh em 1999 <u>19(1-4)</u> 169-172
																		$\begin{array}{l} \mbox{Primary Light-Induced} \\ \mbox{Events in BRA} \\ \mbox{$h\nu$} & \leq 30 \mbox{ fs} \\ \mbox{$BRA {\rightarrow} H^{\prime}(FC) \rightarrow$} \\ \mbox{$BRA {\rightarrow} H^{\prime}(FC) \rightarrow$} \\ \mbox{$\rightarrow [I^{\prime}_{460} <> T^{\prime}_{660}] \rightarrow$} \\ \mbox{$\rightarrow BRA$} \end{array}$	JACS. 1996, 118(50) 12828- 12829,
		all-E-					578											str. JW5. In aqueous solutions containing 100 m M NaCl. BRA T _{5.12} transient species τ_{decay} 18 ps. Laser-induced optoacoustic	Photoche m.Photo biol. 2000, 72(5), 590-597

		Structure	Isomer		2	^λ max (nr	m); ε (M ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
N	lo			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	
								(P)	DA	LA				all-E/13Z-	•	NH ₂ OH	all-E-RET			
																			spectroscopy (LIOAS) was employed to inspect the ns-ms time region. Photothermal beam deflection data with the BRA suspensions. BRA no optical transients have been observed at times longer than several picoseconds.	
																			str. S9. Potassium phosphate buffer pH 7.0. Femtosecond pump–probe spectroscopy BRA.	<u>Chem.</u> <u>Phys.</u> <u>Letters</u> <u>2003,</u> <u>381(5-</u> <u>6), 549-</u> <u>555</u>
			all-E-					576			NO		NO			slight sensitivity to in the dark			In egg phosphatidylcholine vesicles. Flash photolysis at room and liquid nitrogen temperatures and Fourier-transform infrared difference spectroscopy data.	Biophys. J. 1985 47(4). 509-512
																			Atomic force sensing (AFS) for dynamically probe BRA protein conformational changes with microsecond time resolution	<u>PNAS</u> <u>1997,</u> <u>94(15),</u> <u>7937-</u> <u>7941</u>
																			Spin-labeled Pigments (BRA mutants A103C, M163C, or E74C). Reduction reaction	JBiolChe m 2000 275(28) 21010- 21016

	Structure	Isomer		2	مر (nr	m);ε(M⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F (D)	Pigments	5		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA					all-E/132-		NH ₂ OH	all-E-RET		with NH ₂ OH is light- catalyzed in the A103C-labeled pigment, but not in E74C or M163C. ESR data.	
																		Primary dynamics of BRA in fs range.	<u>Chem.</u> Phys.Let t. 1999. <u>314 429–</u> <u>434</u>
																		Photoreduction process by NaBH ₄ probing the photoreactivity of the SB of C13=C14 locked BRA	Photoche mPhotob iol 2002 75(6) 668-674
																		Vibrational Spectrum of a BRA Picosecond Intermediate T5.12 (660 nm, <3 ps formation and decay in 17ps) is measured by picosecond time- resolved coherent anti-Stokes Raman spectroscopy (PTR/CARS).	JACS 2000 122(1) 96-106
																		New model of the primary events of the BR photocycle. Picosecond intermediates appearing in the respective photo- reactions BRA are measured by coherent anti-Stokes Raman spectroscopy (CARS).	Chem Physics 2005, 313(1- 3), 51- 62.

	Structure	Isomer			^λ max (nr	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹		1	CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
																		Comparisons between the PTR/CARS spectra of "J-625" and "T5.12", in BRA with blocking C13=C14 isomerization, support the conclusion that the "J-625" structure reflects the reaction coordinates in the BR photocycle that precede C13=C14 isomerization. Since these PTR/CARS data show "J-625" to have an all- <i>trans</i> retinal, C13=C14 isomerization cannot be the primary reaction coordinate described in numerous models for the BR photocycle.	<u>JPhysCh</u> em A. <u>2000</u> <u>104(18)</u> <u>4130-</u> <u>4139</u>
		all-E-					578											phosphate buffer, pH 7.0. τ_{rec} 15 days. Femtosecond time- resolved mid IR and UV-vis spectroscopy. Excited state of BRA τ_{decay} 18 ps. The fluorescence spectrum of BRA closely resembles that of BR-570 although the relative fluorescence yield is higher (10-fold). Kinetic fits show that the red-absorbing intermediate "T5.12", appears with a	<u>Chem. B</u> 2009, 113(22), 7851- 7860 <u>PNAS</u> 1995 92(6) 2101- 2105

	Structure	Isomer		1	^λ max ^{(nr}	m); ε (Μ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET		time constant of 17 ± 1 ps to form only BRA RR spectra of BRA.	
																		In bRA analogous BR dramatic changes associated with "I5.12" are arrested beyond the first 100 fs, reverting uniformly to the initial ground state with exponential time constants of 19 ps respectively. Evolution of "J625" BR, are not, as previously thought, reliable measures of all-trans \rightarrow 13-cis isomerization dynamics.	JPhysCh emB 1999 103(24) 5122- 5130
		- 15					570											Reaction Path Analysis of the Photoisomerization SB in BRA	JACS 2002 124(15) 4124- 4134
		all-E-				460	5/0											PR/CARS and PTR/CARS data measured from the sample BRA	JPhysCh em A 2003 107(49) 10787- 10797
		all-E-				460	+											τ_{rec} 4-5 days, spectrally and temporally resolved fluorescence properties of locked ABR	Biopoly mers 2002, 67 306–309

Γ		Structure	Isomer			λ _{max} (n	m); ε (Μ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
I	No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	1
								(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
1	134.	$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	all-E-	374ª		460ª		NO			NO								str. R1S9	<u>Recl.</u> 1994, 113(1), 45-52.
			all-E-	384	362	440	393	NO			NO								str. 353P 5mM MES, 1mM EDTA pH 6.0.	Kirillova Yu.G. Ph.D. thesis, 1994
1	135.	$\sum_{i=1}^{i}$	13Z-	376	360	442	420	548			NO		NO		4380		stable in dark		str. 353P, 5mM MES, 1mM EDTA pH 6.0. τ_{rec} 72 h, reversible hydrolysis under light action. pKa (SB) 6.56.	Kirillova Yu.G. Ph.D. thesis, 1994
																				Bioorgan Khim. (Rus), 1993, 19(8), 825-835
			13Z-	366°		440	370sh 395sh 422, 440sh	547			NO destro yed under light action		NO		4480			330-/ 370+ / 510+ / 580-	10mM HEPES, pH 7.0. τ_{rec} 150 min Hydrolysis under light action.	JACS 1983 105(15) 5162- 5164 19
			13Z-						547 600											Biochem 1990 29(25) 5948- 5953
																			C13=C14 locked BRA tested an early photophysical events with subpicosecond time resolution. "I" BRA exhibit long lived decays 11 ps, regenerating their	Biochem M 2001 66(11) 1210- 1219

	Structure	Isomer		1	^λ max (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		Μ	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-	onn	NH2OH	all-E-RET			
										<u> </u>								original ground state.	
		13Z-													$\begin{array}{l} \tau_{1/2 destr} 6300 \\ s \ in \ the \\ dark \\ \tau_{1/2 destr} 100 \\ s \ under \\ light \end{array}$			Light-Induced NH ₂ OH reactions occur with SB C13=C14 locked BRA	Biophys J 1998 75(1) 413-417
																		Atomic force sensing (AFS) for dynamically probe BRA protein conformational changes with microsecond time resolution	<u>PNAS</u> 1997, 94(15), 7937- 7941
																		Spin-labeled Pigments (BRA mutants A103C, M163C, or E74C). Reduction reaction with NH ₂ OH is light- catalyzed in the A103C-labeled pigment, but not in E74C or M163C. ESR data.	JBiolChe m 2000 275(28) 21010- 21016
		13Z-					550											BRA was prepared from BR, D85N, Y185F, and A103C mutants pH 7, 25°C τ_{rec} 16 h. Light-induced protonated Schiff base hydrolysis reaction was studied. Two intermediates are formed during the hydrolysis reaction, H450 (λ max 450 nm) and H430 (λ max 430 nm). Upon blue light irradiation after the hydrolysis reaction,	BiophysJ 2002 82(5) 2617- 2626

	Structure	Isomer		2	مر (nr	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reactio	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			
																		these intermediates rebind to the AM to reform BRA. Irradiation of the H450 intermediate forms the original pigment BRA, whereas irradiation of H430 at neutral pH results in a red shifted species (P580), which thermally decays back to BRA. EPR measurements.	
																		step-scan FT-IR data	<u>LaserCh</u> em 1999 <u>19(1-4)</u> 169-172
																		Photoreduction process by NaBH ₄ probing the photoreactivity of the SB of C13=C14 locked BRA	Photoche mPhotob iol 2002 75(6) 668-674
																		str. S9. Potassium phosphate buffer pH 7.0. Femtosecond pump–probe spectroscopy BRA.	<u>Chem.</u> <u>Phys.</u> <u>Letters</u> <u>2003.</u> <u>381(5-</u> <u>6). 549-</u> <u>555</u>
																		Reaction Path Analysis of the Photoisomerization SB in BRA	JACS 2002 124(15) 4124- 4134
																		In bRA analogous BR dramatic changes associated with "I5.13" are arrested	JPhysCh emB 1999 103(24)

	Structure	Isomer		ĵ	^ک max ^{(nr}	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- gump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	5		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET		beyond the first 100 fs, reverting uniformly to the initial ground state with exponential time constants of 11 ps respectively. Evolution of "J625" BR, are not, as previously thought, reliable moneuron of	<u>5122-</u> 5130
136.	X	13Z-	370	365	445	420	548			NO		NO		4220				reliable measures of all-trans →13-cis isomerization dynamics. str. 353P, 5mM MES, 1mM EDTA pH 6.0.	Kirillova Yu.G.
																		τ _{rec} 14 days	Ph.D. thesis, 1994 Biolog, membra nes (Rus), 1993, 10(4), 447-448
137.	X	13Z-	370	365	445	415	NO			NO				-				str. 353P, 5mM MES, 1mM EDTA pH 6.0. pKa (SB) 6.52.	Kirillova Yu.G. Ph.D. thesis, 1994 Biolog. membra nes (Rus), 1993, 10(4), 447,449

Γ		Structure	Isomer			^λ max (ni	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
	No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	winp %	ratio	cm ⁻¹			CD	others	1
								(P)	DA	LA				all-E/13Z-	om	NH₂OH	all-E-RET			
	138.	Xala Q	13Z-	370	356	439	415	NO			NO				-				str. 353P, 5mM MES, 1mM EDTA pH 6.0.	Kirillova Yu.G. Ph.D. thesis. 1994
																				Bioorgan Khim. (Rus), 1993, 19(8), 825-835
	139.	$\sum_{i=1}^{i} \sum_{i=1}^{i} \sum_{j=1}^{i} \sum_{j=1}^{i} \sum_{j=1}^{i} \sum_{i=1}^{i} \sum_{j=1}^{i} \sum_{j$	13Z-	327, 369	338	420	343	NO			NO								str. R1, 50mM MES, pH 6.5. 24 h NC easy destroyed by Ag ⁺ / Triton X-100. C18-keton easy replaced NC	Bioorgan Khim. (Rus), 1987, 13(8), 1116- 1124
I	140.	X ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	13Z-	364	352	435	NO	NO											str. 353P, 5mM MES, 1mM EDTA pH 6.0.	Kirillova Yu.G. Ph.D. thesis, 1994
	141.	X ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	13Z-	358	348	431	NO	NO											str. 353P, 5mM MES, 1mM EDTA pH 6.0.	<u>Kirillova</u> Yu.G. Ph.D. thesis. 1994
							G. /	Iteratio	on of the	trimeth	ylcyclol	hexenic	ring. Ri	ing modifica	tion					
	142.		all-E-	396		471				600					4560				in water.	BiophysJ 1986 49(2) 479-483
			all-E-						585	593	+		71		4140 4370				str. S9	Biochem Biophys. Res. Com 1977. 78(2).
																				<u>669-675.</u>

	Structure	Isomer		2	^ک max (nr	m);ε(M⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	is with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	S		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA	1			all-E/13Z-		NH₂OH	all-E-RET			
		all-E-						590	602			+++			stable in the dark			str. R1	Biophys. J. 1977 19. 191- 198
		all-E-						+				+++						str. R ₁ M ₁ cells suspensions with 1 mM nicotine	Biochem <u>Soc.Tran</u> <u>s. 1976.</u> 4(4), 556 - 559.
		all-E-						593 ε 47500	603 ε 52200 606 77K		434 -60ºC						DA- 543+ /625- LA- 555+ /577 + /636-	in water 2h or in 75% glycerol for low – temperature experiments. Spectrum of BRA is unchanged when pH 3.5 to 10.	Biochem <u>1978.</u> <u>17(10).</u> <u>1915-</u> 1922
		all-E-							603	+	434 77K	++++	95/5					str. R1. BRA tested by low temperature spectrophotometry at 77K. In 10mM phosphate buffer (pH 6.5). Glycerol was added to the sample to give a final concentration of 75%. Upon cooling from 272K (0°C) to 77K, the absorption maximum of BRA moved from 603 to 624 nm.	Photoche mPhotob iol. 1981. 33(4). 547-557
		all-E-	400		470		593		603			70		4690				str. 353-P, pH 6.0, 20- 23ºC. Cycle and ATP synthesis by BRA cells similar to BR.	Archiv. Biochem Biophys. 1989. 270(1). 184 -197 Biolog. membra

	Structure	Isomer		1	^λ max (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.	
No			"CHO"	SB	SBH⁺	NC	F	Pigments	S		М	%	ratio	cm ⁻¹			CD	others		
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET				
																			nes (Rus), 1984, 1(11), 1125- 1142.	
		all-E-						593	603	+	+							Kinetics of the photo- induced processes in BRA	J.Photoc hem.Pho tobiol., B: Biology 2001, 62(3), 128-132	
		all-E-	401 387°	381	463			592	603 ε 52000	430	+	+++		4710 5010				str. 353-P, pH 6.0, 20- 23ºC	<u>29</u>	
		all-E-					594										542+	in 20 mM sodium phosphate buffer, pH 7.0. CD spectra.	<u>Chirality</u> 2006 18(2) 72-83	
		all-E-						592 589 580 593	603 596 582 600									str. 353-P, ET1001, D96N, 100 mM NaCl, 5 mM MES, pH 6.0, 20-23 0 C, τ_{rec} 1h. str. 353-P str. ET1001 str. D96N str. JW5 BRA cycle similar to BR (M, O). "M" time constants BRA (τ_{Mdec}) coincide with BR data.	Biolog. membra nes (Rus), 2009 26(3) 40-46 Rus, J. Bioorg Chem., 2002, 28(6), 487–493 Mironov a E.V. Ph.D. theory	
ſ		Structure	Isomer		2	ارمی (nr	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
---	----	-----------	--------	-------	----	----------	-----------------------	---------------------------------	----------	---	-------	-------	-------------	------------	------------------	---------------	-----------	----	---	---
	No			"CHO"	SB	SBH⁺	NC	F	Pigments	;		М	%	ratio	cm ⁻¹			CD	others	1
			all-E-					603	DA		425			all-E/13Z-	5010	<u>NH</u> 2OH	all-E-RET		In 100 mM NaCl, 5 mM MES, 3 mM potassium citrate, pH 6.0.	Sensors and Actuator s B: 1997. 39(1-3), 218-221 Mol. Cryst. Liq. Cryst. Liq. Cryst 2000, 345. 317-322
																			str. S9 Model of the color sensitive artificial retina with wild type 3,4-didehydro and 4- oxoBRA WT BR 3,4- didehydroBRA and 4- oxo-BRA, were studied as potential materials for optoelectronic and molecular electronic applications. Thick- film elements based on the three types of BR and PVA were prepared to determine the photoelectric properties of the materials for the development of a color-sensitive optoelectronic sensor.	BioSyste ms 2000, 54(3) 131–140 Optical Mater 2004 27(1) 57–62

	Structure	Isomer		2	^{(nr} max (nr	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	is with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	;		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
143.	Xalaha	all-E-			431		466	466	464				65/35 31/69	1750 1650				pH 7.0, 50 mM Hepes	Photoche mPhotob iol 1991 54(6) 969-976
		all-E- 5,6- trans	370		430				478					2340					<u>BiophysJ</u> <u>1986</u> 49(2)
		all-E- 5,6-cis	369		432				467					1740					<u>479-483</u>
		all-E-	368ª			395		475 ε 53600	475	+	370	+++	60/40		destroyed after 1h in the dark	τ _{1/2repl} 10h		in distilled water at $25^{\circ}C \text{ pH } 6.8. \tau_{\text{rec}} 30$ min, $L \rightarrow D$ -adaptation faster, than in BR. At 77 K "K" formed then \rightarrow "M" $\tau_{1/2\text{Mdec}}$ BRA 2min.	<u>Biochem</u> <u>1981.</u> <u>20(2).</u> 428-435
		all-E-	370		425		476							2500				67 mM phosphate buffer, pH 7.0. τ _{rec} 60 min,	<u>JACS.</u> <u>1980.</u> 102(27), 7945 – 7947
		all-E-	368		428		476							2300				pH 7.0 in H₂O	<u>JACS.</u> <u>1986.</u> 108(11). <u>3104 -</u> <u>3105</u>
		all-E-			425		475	475		+	350			2500				pH 7.0 in H₂O. L-D- adaptation faster. 'M‴decay delayed.	Photoche mPhotob iol 1981 33(4) 483-488
		all-E-																Raman spectra Schiff base BRA (-C=NH-) stretching frequency. 1660 cm ⁻¹	Photoche <u>mPhotob</u> iol 1985 41(5) 563-567

	Structure	Isomer		î	^λ max (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- numn	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	S	1	М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			
		all-E-			425		466 484 484					10.15		2240				in water. pH 7.0 pH 2.5 pH 0.5	BiophysJ 1989 56(6) 1259- 1265
		5,6- trans			400		478			+		10-13		2040					Pure Appl. Chem.,
		all-E- 5,6-cis	370		432		467			+		10-15		1740					<u>1986,</u> <u>58(6),</u> <u>719-724</u>
		all-E-	368ª				470											Protein-β-lonone Ring Interactions. Second harmonic generation (SHG) to probe the light-induced dipolar changes.	JPhysCh em B 2003 107(25) 6221- 6225
		all-E- 5,6-cis					467										449+	in 20 mM sodium phosphate buffer, pH 7.0. CD spectra.	<u>Chirality</u> 2006 18(2) 72-83
144	L. X	all-E- 13Z-	370 ^b ε 48800				492 ε 68000 480		484	+		+	85/15 60/40		unstable _{τ1/2destr} 40 min, 20°C			str. AO151, cells suspensions or BO at pH 5.5-7.5. τ_{rec} 150 min. Transient changes in flash photolysis BRA two species were found. One 520 nm τ_{form} 100ms, $\tau_{1/2decay}$ 400 ms and 370 nm τ_{form} 10ms. Neither of these species were comparable to the BR cycle.	FEBS Lett. 1980 117(1). 363-367.
		all-E-			430		476	476	472	+			70/30 45/55	2250 2050				pH 7.0, 50 mM Hepes	Photoche mPhotob iol 1991 54(6)

	Structure	Isomer		2	λ _{max} (ni	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No	5		"CHO"	SB	SBH⁺	NC	F	Pigment	S		М	%	ratio	cm ⁻¹			CD	others	-
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			<u> </u>
																			<u>969-976</u>
		all-E-					495											str. ET1001. In 4 <i>M</i>	Photoche
																		NaCl, 25 mM Tris-HCl buffer. pH 7.2 τ _{1/2rec} 5	<u>mPhotob</u> iol 1994
																		min	<u>60(4)</u>
																			<u>388-393</u>
		all-E-	368		431				484					2540				In water.	BiophysJ
																			<u>49(2)</u>
14	5.	all-F-	392		465		537							3100		stable		str R1S9	4/9-483 Recl.
									549			40		3300					1987
																			<u>106(4)</u> 112-119
140		all-E-	388		453	420/	540		5/8			70	50/50	3600		stable		str. R1S9	Recl.
						400			540			10	100/0	3000				τ_{rec} in 3 laster then BR. in H ₂ O	<u>1987</u> <u>106(4)</u>
	\sim																		<u>112-119</u>
		all-E-	388ª			420/	550	546	554		440		62/38		τ _{1/2destr} 40			str. R ₁ M ₁ , in 70 mM	Biochem
						460			551		410	114	92/8		in the dark.			potassium phosphate, pH 6.5. τ_{rec} 20 min.	<u>1983</u> 22(11)
		13Z-	381ª			420/ 460	533											BRA cycle compared	<u>2637-</u> 2644
						400												ms,"O"'640 nm τ_{form} 9	2011
																		ms. str. W296.	
		all-E-	388ª			420/	548	540					50/50			stable		str. R1S9, τ _{rec} 15 min	FEBSL
						460			548			70	100/0						$\frac{1983}{154(1)}$
		407	0043			100/	505	540					50/50						$\frac{150(1)}{180-184}$
		13Z-	381ª			420/ 460	535	540	548				50/50 100/0						
		11Z-	384ª			425	NO												
14'	7 1 1 1	9Z- all-E-	380ª		470	NO	NO 558							3350		stable		str. R1S9	Recl
14		an- 	000		10		000		566			99		3600		310010			<u>1987</u>
																			<u>106(4)</u> <u>112-119</u>

	Structure	Isomer		1	^λ max (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- gump	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	S		М	%	ratio	cm ⁻¹			CD	others	1
148.		all-E-	401		474		(P) 553	DA	LA 564			96	all-E/13Z-	3000 3400	NH₂OH	all-E-RET stable		str. R1S9	<u>Recl.</u> <u>1987</u> <u>106(4)</u> <u>112-119</u>
		all-E-					552 592 560											in water. pH 7.0 pH 2.5 pH 0.5	BiophysJ 1989 56(6) 1259- 1265
149.		all-E-	387		458		539		544			57		3300 3500		stable		str. R1S9 τ_{rec} in 1.5 faster than BR. in H ₂ O.	<u>Recl.</u> <u>1987</u> <u>106(4)</u> <u>112-119</u>
		all-E-		368	457		535		545		410			3190 3200				pH 6.5 Hepes buffer.	<u>Retinal</u> <u>Proteins</u> <u>1987.</u> 205–216
		all-E-			457		535		545	+	410			3190 3200				pH 7.0, Hepes buffer. BRA cycle compared to BR. Short-lived "K", long-lived "M'.	17 FEBS Lett. 1984. 166(2). 245-247
150.		all-E-					495	495		+	+	+				stable		str. ET1001 BRA cycle compared to BR. str. JW 2N white membrane cells for H ⁺ -pump.	Photoche mPhotob iol 1991 54(6) 873-879
151.		all-E-					485											str. ET1001. In 4 M NaCl, 25 mM Tris-HCl buffer, pH 7.2, $\tau_{1/2rec}$ 2 min.	Photoche mPhotob iol 1994 60(4) 388-393
152.	Xalada.	all-E-	378 ^b			420	504 In H ₂ Ο ε 50000					++						str. JW 5 white membrane cells, τ_{rec} 4 min	AngewC hem_IE 1987 26(6) 580-583

	Structure	Isomer		1	λ _{max} (ni	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigment	S		М	%	ratio	cm ⁻¹			CD	others	
							(P) 545 in	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			
							4M												
							NaCi												
152		13Z-					504											str ET1001 In 4 M	Photosha
155.		a⊪-∟-					430											NaCl, 25 mM Tris-HCl	mPhotob
																		buffer, pH 7.2, τ _{1/2rec} 15 min	<u>iol 1994</u> 60(4)
																			<u>388-393</u>
154.		all-E-	385				570					20						str. JW 5 white	AngewC
		β–isome r										(α+β)						membrane cells	<u>hem IE</u> 1987
																			<u>26(6)</u>
155.		all-E-					460					20						str. JW 5 white	AngewC
		α–isom er										(α+β)						membrane cells	<u>hem IE</u> 1987
	ОСН3																		26(6)
156.		all-E-		350	418		465					0		2400					Photoche
																			<u>m.Photo</u> biol.
																			<u>1993.</u>
																			<u>701-705</u>
		all-E-	360	350	418		465	465					70/30	2400					JACS
									465		NO	0	30/70	2400					<u>1986.</u>
																			$\frac{108(19)}{6077}$
																			6078 Tetrahed
																			ron L.
																			<u>1989.</u> 26(50),
																			<u>6209-</u> 6212
157.	Xalala	all-E-	362		420		452		452	+		2.5-16		1690		stable	415-	str. 353-P, pH 6.0, 20-	Archiv.
									452					1090			/300-	BRA cycle kinetics	Biophys.
		13Z- rac																drastically slowed	<u>1989.</u> 270(1).
																		ψιει Ο. 1 - <u>+</u> <u>-</u> Ο.ΟΟ.	184 - 197

		Structure	Isomer		λ	^u max (nr	n);ε(Μ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- gump	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
Ν	lo			"CHO"	SB	SBH⁺	NC	F	rigments	3		М	%	ratio	cm ⁻¹			CD	others	1
_								(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			Biolog
																				membra
																				<u>(Rus),</u>
																				<u>1984,</u> <u>1(11),</u>
																				<u>1125-</u> 1142.
																				Rus. J.
																				Chem.,
																				<u>2002,</u> 28(6),
			all-E-	249,		421°		485						95/5	3100		stable	245+	str. R ₁	<u>487–493</u> Biochim.
			(5S,6R)	365ª				ε 41000		478			7	50/50	2830		τ _{1/2 repl} 8000 min	/355- CHO	CD-BRA-460(+), 520	Biophys. Acta
				45300				11000											$\tau_{1/2rec}$ 400s, 10°C	<u>1987.</u>
			13Z-	253,														250+	X-rays diffraction data	<u>891(2).</u> 177 -193
				358ª														/350- CHO		
			all-E- (5R 6S)	249, 365ª		421°		445 S		445			+	96/4 48/52	1300		stable	245- /355	CD-BRA-435(+) 490	
		·	(011,00)	ε 45000				40000		110				10,02			260 min	+ CHO	(-) sh	
				45300														СПО	τ _{1/2rec} 48s, 10°C X-rays diffraction data	
			13Z-	253,														250-		
				358ª														/350 +		
																		СНО		
			all-E-					+												Biochem
			rac																str. R ₁ M ₁ cells suspensions with 1	<u>s. 1976.</u>
																			mM nicotine	<u>4(4), 556</u> <u>-559.</u>
			all-E-					452				375			1680					Sensors
			rac					402				5.0							In 100 mM NaCl, 5	and
																			MINI MES, 3 MINI	s B:

	Structure	Isomer)	Max (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET		potassium citrate pH 6.0.	1997. 39(1-3). 218-221. Mol. Cryst. Liq. Cryst 2000.
158.	Xalana a	all-E-	363		422		460							1960					<u>345.</u> <u>317-322</u> 29
159.		all-E-	331		380		412		412					2040			430+ /370-		<u>29</u>
160.	ОН ОН	all-E-	365				465												<u>29</u>
161.	Xalada.	all-E-					557 558 556											In water. pH 7.0 pH 2.5 pH 0.5 Molecular Dynamics Study BRA	BiophysJ 1989 56(6) 1259- 1265 Biochem 1994 33(12)
																		Molecular Dynamics Study BRA	3668- 3678 BiophysJ 1995 68(4) 1270- 1282
162.	HO X X X X X X X X X X X X X X X X X X X	all-E-	380ª				520											Protein- β -lonone Ring Interactions. Second harmonic generation (SHG) to probe the	JPhysCh em B 2003 107(25)

	Structure	Isomer		1	λ _{max} (n	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No)		"CHO"	SB	SBH⁺	NC	F	vigments	6		М	%	ratio	cm ⁻¹			CD	others	-
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET		light-induced dipolar changes.	6221- 6225
16	3. H ₃ co	all-E-	380ª				470											Protein- <i>β</i> -lonone Ring Interactions. Second harmonic generation (SHG) to probe the light-induced dipolar changes.	JPhysCh em B 2003 107(25) 6221- 6225
164	4. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	all-E-	380ª				460											Protein-β-lonone Ring Interactions. Second harmonic generation (SHG) to probe the light-induced dipolar changes.	JPhysCh em B 2003 107(25) 6221- 6225
16:		all-E-	222, 240, 362ª				510		510										J. Sci Ind Res. 1982. 41(11), 665-673
16		all-E-			438		470	470	470	+ +			62/38 62/38	1550 1550				50 mM Hepes, pH 7.0	Photoche mPhotob iol 1991 54(6) 969-976
		all-E-					462 494 505											in water. pH 7.0 pH 2.5 pH 0.5	BiophysJ 1989 56(6) 1259- 1265
		all-E-		360	440		465/ 550sh			+	390			1220 4500				Hepes buffer pH 7.0. BRA consists from 2 species with independent cycles.	Retinal Proteins 1987. 205–216
																			JACS 1984 106(8) 2435- 2437

	Structure	Isomer		2	λ _{max} (n	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- amua	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	S		М	%	ratio	cm ⁻¹			CD	others	
					I								all-L/132-					Molecular Dynamics Study BRA.	17 Biochem 1994 33(12) 3668-
																		Molecular Dynamics Study BRA	<u>3678</u> BiophysJ 1995 68(4) 1270- 1282
167.		all-E-					465		465	+	390							Hepes buffer pH 7.0. BRA consists from 2 species with independent cycles.	JACS 1984 106(8) 2435- 2437
		all-E-		360	440		465/ 550sh			+				1220 4550					Retinal Proteins 1987. 205–216
		all-E-					469 503 510											in water. pH 7.0 pH 2.5 pH 0.5	BiophysJ 1989 56(6) 1259- 1265
168.		all-E-	348°					462		NO								30 mM sodium phosphate buffer, pH 7.2 unstable. On standing for several hours, or on exposure to light, the BRA absorption maximum shifts to 530 nm	Photoche m.Photo biol. 1986. 43(3), 297 -303

	Structure	Isomer		2	∿ _{max} (nr	n);ε(M⁻	¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
169.	Br	all-E-	352°					460		NO								30 mM sodium phosphate buffer, pH 7.2 unstable. On standing for several hours, or on exposure to light, the BRA absorption maximum shifts to 530 nm	Photoche m.Photo biol. 1986. 43(3). 297 - 303
		all-E- 11,12- ³ H						470 464 470 NO										str. IV-8, in 50 mM sodium phosphate buffer, pH 7.4. WT Met118Cys Thr121Cys Serl41Cys Incorporation of tritiated chromophore into the Met118Cys mutant BRA. Modified by N-ethylmaleimide BO formed a pigment with 4-bromoretinal but no cross-linking was observed, providing evidence that the cross-linking of the chromophore is to the Cys118 (BRA470nm)	<u>Biochem</u> <u>1994.</u> <u>33(38).</u> <u>11624 -</u> <u>11630</u>
																		MD analysis suggests the following ranking of binding site mutants in order of reactivity: R118C> S118C>> S121C> R141C>> S141C>> R121C, R138C, S138C. Chiral center of 4-bromo-Ret produces variable impact on potential crosslinking.	Biochem MolBioll 1999 47(5) 773-780

	Structure	Isomer		2	Max (nr	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			
																		Chirality appears to	
																		the M118C mutants	
																		but shows more	
																		the T121C and S141C	
																		mutants.	
170.		all-E-	340°					455		NO								30 mM sodium	Photoche
- ,																		phosphate buffer, pH	m.Photo
																		7.2 unstable. On standing for	<u>biol.</u> 1986
																		several hours, or on	<u>43(3),</u>
																		exposure to light, the BRA absorption	<u>297 -303</u>
																		maximum shifts to	18
171		all-E-	20/		115		506							2710			300+	530 nm	Bioorgan
1/1.		all-L-	380		440		500		506	+				2710			/462	h	<u>.Khim</u>
			8 42700														+ /540-		<u>(Rus),</u>
	Ӂ ,		43700														/540-		<u>5(7),</u>
	0	13Z-	294,				506	506	506								470+		<u>1053-</u>
			3/3 ε						500	т							/535-		1038
			35300																
		all-E-					506			+								str. R1, in 50 mM	Bioorgan
			380															phosphate buffer at	Khim (Rus)
			ε 43700															рн 7.0	<u>(Rus),</u> <u>1981,</u>
																			<u>7(11),</u>
																			<u>1731-</u> 1733
		all-E-	0702	360ª	425ª		524							4400	stable till	stable		in distillant contain with	Photoska
		a 	318°	509	420		524	506			410-			3770	1h in 20	SIGNIC		In distilled water, pH 7.0. τ _{rec1/2} ~5min	m.Photo
									502	+	412	+		3610	mM			"M"-intermediate	biol.
																		decay kinetics and	<u>1991.</u> 54(6),
																		much slower than in	<u>977-983.</u>
																		BR.	Biochem
																			<u>1991</u>
																			$\frac{30(11)}{100}$

	Structure	Isomer		2	^ک max (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- numn	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			
																			2976- 2988
		all-E-					520											str. R1M1 cells grows in presence of 4- oxoRet when synthesis of natural Ret blocked.	FEBSL <u>1976,</u> 71(2), 333-336.
		all-E-			425		527		511	+				4550 3960				str. 353-P, pH 6.0.	<u>Biokhim</u> (<u>Rus),</u> 1989,
		13Z-					504		507	+									<u>54(1).</u> 136-138
		all-E-	380	369	425		506					25-70		3770				str. 353-Ρ, pH 6.0, 20- 23ºC. φ _{rel} 0.7±0.1.	29 Archiv. Biochem Biophys. 1989. 270(1). 184 -197 Biolog. membra nes (Rus). 1984. 1(11). 1125- 1142.
		all-E- 13Z-					527				410							4-oxoRet formed with BO BRA. BRA cycle with drastically slowed intermediates and high value of $\phi_{rel.}$ <i>all-E</i> - 4-oxoBRA cycle has full period in a several min. "M" formation rate close to BR, but its decay is in biphasic mode. One component compared to control BR and tails contain slowed	Vestnik St- Peterbur g Univer, Ser 3 2012, (4), 82- 92 Biochem (M), 2012, 77(9),

	Structure	Isomer		3	^λ max (ni	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H ⁺ -	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	l i	Pigment	s		М	winp %	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA	1			all-E/13Z-	•	NH ₂ OH	all-E-RET			
		all-E-					526 527	527 526 527 490	511 508 503 483				<u>all-E/13Z-</u>		NH2OH			components. It was compared the kinetics of spectral transformations of individual forms of E- and Z-4-oxoBRA and it was found that the E-cycle contains no long-wavelength intermediates, and all signals recorded in this region on uncontrolled samples are a summary of "K"like long-lived intermediates of the Z-isomer cycle. str. 353-P, ET1001, D96N, 100 mM NaCl, 5 mM MES, pH 6.0, 20-23°C, τ_{rec} 1h. str. 353-P str. ET1001 str. D96N in str. JW5 cells. Both for ET1001 and for D96N strains the "M"-relaxation of the 4-oxoBRA was distinctly biphasic, with the slow phase comprising about 10– 15% of the signal amplitude. For BRA the efficiency of the "M"-intermediate formation did not exhibit any reliable dependence on the point mutation. It was shown an additional decelaration of M"-	Biolog. membra nes. (Rus). 2009 26(3) 40-46 Rus. J. Bioorg. Chem 2002. 28(6). 487-493 Mironov a E.V. Ph.D. thesis. 2002

	Structure	Isomer		2	^λ max (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	lsomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	;		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-	•	NH₂OH	all-E-RET			
																		oxoBRA in D96N str.	
		all-E-					506			+	410							In 100 mM NaCl, 5 mM MES, 3 mM potassium citrate, pH 6 and in PVA dry films.	Sensors and Actuator s B: 1997. 39(1-3). 218-221. Mol. Cryst. Liq. Cryst. 2000. 345. 317-322
																		The effect of pH and sodium azide on the photochemical cycle of 4-oxo-BRA has been investigated The effect of applied	Biophys (Rus), 1992, 37, 79- 84 Biophys
																		constant electric field was investigated (10 ⁷ V/m) on spectral properties of 4-oxo- BRA embedded in the gelatin-based matrix.	<u>(Rus),</u> <u>1992,</u> <u>37, 86-</u> <u>90</u>
																		BRA cycle was investigated in water suspension by pulse and low-temperature absorption spectroscopy. The scheme of BRA photochemical reactions was proposed.	Biologic heskie Membra ny 1991, 8(5), 460-467
																		Incorporation of the 4- oxo-Ret into D85N AM was unexpectedly	<u>Thin</u> Solid Films.

	Structure	Isomer		1	^λ max (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- numn	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	;		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
																		slow: more than 10 days were required, and the yield was < 10%. It was demonstrated that electric field-induced SB deprotonation take place. SB pK = 6.15.	<u>1997.</u> <u>302(1–</u> 2), 231– 234
																		Spectral and kinetic transformation studies of gelatin films based on 4-oxo WT BRA and D96N mutant BRA were carried out using absorbance spectroscopy. It was studed the influence of chemical additives and sodium azide on "M"-decay kinetics.	Thin Solid Films 1997 293(1-2) 281-284
																		str. 353P, R1M1 or ET-1000 Photochromic and electrochromic spectral properties of 4-oxo-BRA embedded in a polymer matrix were studied.	BioSyste ms 1995 35(1) 129-132
																		str. R1M1 or ET-1000 Photochemical reactions in a 4-oxo- BRA were studied by using low-temperature and pulsed laser absorption spectroscopy.	BioSyste ms 1995 35(1) 133-136
																		WT BR, 3,4- didehydroBRA and 4- oxo-BRA, were studied as potential	<u>Optical</u> <u>Mater</u> 2004 27(1)

	Structure	Isomer		2	مر (nr	m);ε(M⁻	¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
																		materials for optoelectronic and molecular electronic applications. Thick- film elements based on the three types of BR and PVA were prepared to determine the photoelectric properties of the materials for the development of a color-sensitive optoelectronic sensor	<u>57-62</u>
																		WT PM. theoretical model for the nonlinear transmittance properties of 4-oxo- BRA.	Optical Mater 1999 12(4) 473-480 ProcSPI E 1998 3347. 58-60
																		str. S9 Model of the color sensitive artificial retina with WT 3,4- didehydro and 4- oxoBRA	BioSyste ms 2000, 54(3) 131–140
																		compared the proton uptake and release of WT and two mutant BR D96N, D85N in BRA films or L-B layers on ATO	Bioelectr ochem 2000 51(1) 27-33
																			Bioelectr ochemBi oenergeti cs 1997 44(1)-

	Structure	Isomer			^λ max (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- amua	Isomer	OS BR	Reaction	is with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	S		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
																			<u>37-43</u>
172.		all-E-	380ª	370ª	426ª		522	508	500	+	400	+		4400 3700 3470	stable till 1h in 20 mM	stable		in distilled water pH 7.0. τ _{1/2rec} ~5 min "M"-intermediate decay kinetics and proton uptake are much slower than in BR.	Photoche m.Photo biol. 1991. 54(6). 977-983. Biochem 1991 30(11). 2976- 2988
173.		all-E-	435 ^a ε 45000	442ª	455ª		515	500	500	+	360- 370			2600 1980 1980	stable till 1h in 20 mM			in distilled water pH 7.0. τ_{rec} ~BR $\tau_{1/2Mdec}$ >>200ms cross-links with Arg residues doesn't formed.	Photoche m.Photo biol. 1991. 54(6), 977-983. Biochem 1991. 30(11), 2976- 2988
174.	Халана Он	all-E- 13Z-	254, 375 ϵ 40100 254, 375 ϵ 30800		440		535		543 543	+				4040 4310 4040 4310			360+ /420- /520 +/ 577- 380+ /503 +/ 577-	str. R1 in water τ _{rec} 24 h	Bioorgan .Khim 1979, 5(7), 1053- 1058
		all-E- all-E-			437		525 535	525	527	+			85/15 65/35	3800 3900				50 mM Hepes, pH 7.0	Photoche mPhotob iol 1991 54(6) 969-976

	Structure	lsomer		2	^λ max ⁽ⁿⁱ	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA]			all-E/13Z-		NH ₂ OH	all-E-RET			
		all-E-	370°				530		540									in 50 mM sodium acetate buffer pH 5.5.	Photoche mPhotob iol 1981, 33(4), 489-494
							540		540	+	400	+++						30 mM sodium phosphate buffer, pH 7.2	Photoche m.Photo biol. 1986. 43(3), 297 -303
		all-E-					540											in 67 mM phosphate buffer at pH 7.0	Photoche mPhotob iol 1981, 33(4), 483-488
		all-E-		360	440		550			+				4550				Hepes buffer pH 7.0.	Retinal Proteins 1987. 205–216
									540	+	390							Hepes buffer pH 7.0	JACS 1984 106(8) 2435- 2437
		all-E-	375 ε 40100		440		538			+	400	+++		4140				str. R1, in 50 mM phosphate buffer at pH 7.0	Bioorgan Khim (Rus), 1981, 7(11), 1731- 1733
			515											1140				str. 353-P, pH 6.0, 20- 23°C. Cycle BRA ("M" "O") similar to BR, but time constants altered. Rate of "M"- intermediate decay is	Archiv. Biochem Biophys. 1989. 270(1). 184 -197

		Structure	Isomer		2	¹ max (nr	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
Ν	lo			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	
								(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			
			all-E-	375		440		538			+	400	+++		4140				higher than the relaxation rate to BRA. ϕ_{rel} 0.7±0.1. str. 353-P. pH 6.0. 20-	Biolog.
			all-E-					538			+	400							23°C. Cycle BRA ("M" "O") similar to BR, but time constants altered. Rate of "M"- intermediate decay is higher than the relaxation rate to BRA. ϕ_{rel} 0.7±0.1.	membra nes (Rus), 1984, 1(11), 1125- 1142.
																			In 100 mM NaCl, 5 mM MES, 3 mM potassium citrate pH 6.0.	Sensors and Actuator s B: 1997. 39(1-3), 218-221
17	75.	HO	all-E-					556 610 552											in water. pH 7.0 pH 2.5 pH 0.5	BiophysJ 1989 56(6) 1259- 1265
17	76.	OCH3	all-E- 4- [O ¹³ CH ₃]	370 ε 42000			+	470										450+	str. R1, in 50 mM phosphate buffer at pH 7.0	Bioorgan Khim (Rus), 1981, 7(11), 1731- 1733
			all-E-	370		440		475			+		+		1680				str. 353-P, pH 6.0, 20- 23°C, BRA consists from at least 2 species with independent cycles. No long-wave intermediates were	Biolog. membra nes (Rus). 1984. 1(11). 1125- 1142.

	Structure	Isomer		2	λ _{max} (ni	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	-
		all-E-	370		440		(P) 475	DA	LA	+		+	all-E/13Z-	1680	NH₂OH	all-E-RET		detected in 4- methoxyBRA. ϕ_{rel} 0.15±0.04. str. 353-P, pH 6.0, 20- 23°C, BRA consists from at least 2 species with independent cycles. No long-wave intermediates were detected in 4- methoxyBRA. ϕ_{rel} 0.15±0.04.	Archiv. Biochem Biophys. 1989. 270(1). 184 -197
177.	OC ₂ H ₅	all-E-	375 ε 43000			+	500										460+	str. R1, in 50 mM phosphate buffer at pH 7.0	<u>Bioorgan</u> <u>Khim</u> (<u>Rus).</u> <u>1981.</u> 7(11). <u>1731-</u> 1733
178.	OCH(CH ₃) ₂	all-E-	375 ε 40000			+	500- 530										460+	str. R1, in 50 mM phosphate buffer at pH 7.0	<u>Bioorgan</u> <u>Khim</u> (<u>Rus).</u> <u>1981,</u> <u>7(11),</u> <u>1731-</u> <u>1733</u>
179.	OC(CH ₃) ₃	all-E-	375 ε 40500			+	500- 530										460+	str. R1, in 50 mM phosphate buffer at pH 7.0	Bioorgan Khim (Rus), 1981, 7(11), 1731- 1733
180.		all-E-	375 ε 41000			+	470										470+	str. R1, in 50 mM phosphate buffer at pH 7.0. slowly hydrolysed in 4-hydroxyBRA	Bioorgan Khim (Rus), 1981, 7(11), 1731- 1733

	Structure	Isomer		î	^λ max ⁽ⁿⁱ	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- numn	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	8		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA	1			all-E/13Z-	••••	NH ₂ OH	all-E-RET			
181.	OCOCH ₂ CH ₂ Br	all-E-	375 ε 40500			+	455											str. R1, in 50 mM phosphate buffer at pH 7.0. easily hydrolysed in 4- hydroxyBRA	Bioorgan Khim (Rus), 1981, 7(11), 1731- 1733
182.	$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	all-E-	376	355	436		457		460					1050 1200				str R1S9, pH 7.0 τ _{rec} 4 h	<u>29</u>
183.	N(CH ₃) ₂	all-E- all-E-		360	440		455 455		455	+	390			750				Hepes buffer pH 7.0. Hepes buffer pH 7.0	<u>JACS</u> <u>1984</u> <u>106(8)</u> <u>2435-</u> <u>2437</u> <u>Retinal</u>
																		Molecular Dynamics	Proteins 1987. 205–216 17 Biochem
																		Study BRA.	<u>1994</u> <u>33(12)</u> <u>3668-</u> <u>3678</u> <u>BiophysJ</u>
				toration	of the t	rimothyl	cycloba	vonic ri	ing Por		at ring t	o aroma	tic or botor		ragmonts				<u>1995</u> <u>68(4)</u> <u>1270-</u> <u>1282</u>
184		all-E-	391	371	452	lineury	508		ing. Kep	+				2440	ayments			str. 353P, in 50mM	Bioorgan
		13Z-	ε 56700 385	368	448		499		504	+	+	+		2260 2280				MES, 5mM EDTA, pH 6.5, 20 ⁰ C, τ _{rec} 10-12 h	<u>.Khim.</u> <u>1987,</u> 13(2),
			ε 55400						501	+				2360					238-251 27

	Structure	Isomer		2	^λ max (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	S		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
		all-E-			455			480						1150				str. R1, pH 7.0 in water	Photoche mPhotob iol 1981 33(4) 483-488
		all-E-	388ª	357, 372, 387	453	+		480	487	+				1240 1540			485+ 555-	str. R1, in 10mM HEPES buffer, pH 7.0	Photoche <u>m.Photo</u> <u>biol.,</u> 1984, 39(5), 661-665
		all-E-	391ª ε 54600				510 ε 43000			+	+	20-50				stable		In 100 mM phosphate Na, pH 6.5. τ_{rec} <1 min Maximun BRA shifted to 480 nm at high pH values in Tris- phosphate buffer in the presence of NaCl or KCI. SB pK 8.1. Without NaCl 512 - 509 nm.	JBiolChe m 1981 256(8) 3797- 3801
		all-E-		367	448		512			+	+	+		2790				Hepes buffer pH 7.0	Retinal Proteins 1987. 205–216
		all-E-	385ª		448ª			507	512	+	400	+		2600 2790				100 mM Hepes buffer pH 7.0. $\tau_{1/2Kdec}$ 30 µs Cycle BRA with "K,L,M,O" intermediates	Photoche mPhotob iol 1983 38(2) 197-203
		all-E-	390ª		452	+	440, 480, 520		505		+	+	95/5 20/80	1290 2890 2320				str. R1M1, 5mM phosphate buffer /50% glycerol, pH 6.8, 3° C. τ_{rec} BRA520nm 40h. Two species BRA 520/480nm	Biochem 1984. 23(11), 2507- 2513

	Structure	Isomer		1	λ _{max} (ni	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	is with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-	•	NH₂OH	all-E-RET			
		all-E-	373		455		480							1150	unstable in 0.1 M NH₂OH.			in distilled water or 67 mM phosphate buffer, pH 7.0, τ_{rec} BRA480 nm 1 h.	JACS. 1980. 102(27), 7947 - 7949
		all-E-					510											str. ET1001. In 4 M NaCl, 25 mM Tris-HCl buffer, pH 7.2, $\tau_{1/2rec}$ <1 min.	Photoche mPhotob iol 1994 60(4) 388-393
		all-E-	391		452		508		504	+	+	20-50						str. 353P, in 50mM MES, 5mM EDTA, pH 6.5, 20 ⁰ C. φ _{rel} >0.5. all-E-BRA cycle has "M" and compared	Biokhim ia (Rus), 1987, 52(9), 1559-
		13Z-					499		501									with BR cycle. In 13Z- BRA cycle"M" absent and have at least 2 long-waved intermediates. L-D- adaptation drastically retarded.	<u>1569.</u> Biokhim ia (Rus.), 1993, 58(6), 819-826
																			Colloque INSER M 1992. 221. 167 -170
		all-E-					512 509 508	508	508	+	+							str. 353-P, ET1001, D96N, 100 mM NaCl, 5 mM MES, pH 6.0, 20-23 ⁰ C, τ_{rec} 1h. str. 353-P str. ET1001 str. D96N BRA cycle similar to BR (M, O). Strong retardation of the "M" time decay BRA (τ_{Mdec}) it was shown	Biolog. membra nes (Rus). 2009 26(3) 40-46

	Structure	Isomer			λ _{max} (n	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	8		М	%	ratio	cm ⁻¹			CD	others	
		all-E-					(P) 500	DA	LA				all-E/13Z-		NH₂OH	all-E-RET		for str. ET1001 BR and mutant D96N. Second harmonic generation signal BRA	JACS 2002. 124(40). 11844- 11845
185.		all-E- 13Z-	387ª 381ª		453		540 dif +						5/95	3560				str. R1M1 in 5 mM phosphate buffer, apomembrane suspensions in 50% glycerol pH 6.6, 20°C	Biochem 1984. 23(11), 2507- 2513
186.		13Z- all-E-	383 380	363	440		504 492 ε 43000 506 ε 54000							2960				str. R_1M_1 100 mM sodium acetate buffer pH 5.0, $\tau_{rec} \sim h$. X-ray photoelectron spectroscopy	<u>JPhysSo</u> <u>cJapan.</u> <u>1982.</u> <u>51(8).</u> <u>2383 –</u> <u>2384</u> <u>JPhysSo</u> <u>cJapan</u> <u>1984.</u> <u>53(4).</u> <u>1557-</u> <u>1564</u>
187.		all-E-	218, 273, 355, 372, 390ª				466											str. R ₁ M ₁ pH 7.0, 25°C 10 mM HEPES buffer X-ray photoelectron spectroscopy	<u>J. Sci</u> <u>Ind Res.</u> <u>1982.</u> <u>41(11),</u> <u>665-673</u>
188.		all-E- 13Z-	378ª 371ª		434	430/ 460	470, 510 520 Dif 490						5/95	890 3020 3810				str. R1M1 in 5 mM phosphate buffer, apomembrane suspensions in 50% glycerol pH 6.6, 20°C	Biochem 1984. 23(11). 2507- 2513

	Structure	Isomer		1	^λ max (nr	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	is with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	S		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA	1			all-E/13Z-		NH ₂ OH	all-E-RET			
189.		all-E-					+											str. R1M1 in 5 mM	Biochem 1984
		13Z-					+											apomembrane	<u>23(11),</u>
	Ĩ_₀																	glycerol pH 6.6, 20°C	<u>2507-</u> 2513
100			000	050	100		474							1000					
190.		a⊪-⊑-	380 E	359	439		474		485	+	+			2160				MES, 5mM EDTA, pH	Z7 Bioorgan
			50800															6.5, 20°C	<u>.Khim.</u> 1987
		13Z-	375	352	436		490		405					2530					<u>13(2),</u>
			ε 49700						485					2320					238-251
																		str R1 in 40 mM	Photoche
		all-E-	384ª				460			+	375	+						phosphate buffer pH	mPhotob
			ε 46500				ε 39000	460			-60°C							7.0	$\frac{1011985}{41(3)}$
		127	0003																303-307
		152-	380°																
		all-E-	380ª		442		460 500sh		485				96/4 15/85	890 2010				str. R1M1 in 5 mM phosphate buffer,	Biochem 1984.
							505							2020				apomembrane	<u>23(11),</u>
							dif							3930				glycerol pH 6.6, 20°C.	<u>2507-</u> 2513
191		all-E-	305	373	463		103							1320				τ _{rec} 3 h str 353P in 50mM	Bioorgan
171.		an- <u>-</u> -	8 8	5/5	400		-00		503	+	+			1720				MES, 5mM EDTA, pH	<u>.Khim.</u>
			48100															6.5, 20ºC, τ _{rec} 10-12 h	<u>1987,</u> 13(2),
		13Z-	389	369	456		505		108					2130					238-251
			ء 45200						-30					1000					<u></u>
		all-E-			458		497	497					66/34	1700				pH 7.0, 50 mM Hepes	Photoche
								-	498				30/70	1750				······	mPhotob
																			<u>54(6)</u>
																			<u>969-976</u>
		all-E-					524											Second harmonic	JACS
																		generation signal BRA	<u>2002,</u> 124(40),

	Structure	Isomer			^λ max (nr	n);ε(Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	5		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			<u>11844-</u> 11845
192.		all-E-	404 ε 49600		471		530		521	+		+		2360 2040				str. 353P, in 50mM MES, 5mM EDTA, pH 6.5, 20ºC, τ _{rec} 10-12 h	Bioorgan .Khim. 1987,
		13Z-	400 ε 49800	379	474		512		520					1570 1870					<u>13(2),</u> 238-251 27
193.		all-E-	397,5 ε 49700	376	462		491		494					1280 1400				str. 353P, in 50mM MES, 5mM EDTA, pH 6.5, 20ºC, τ _{rec} 12 h	Bioorgan .Khim. 1987,
	1	13Z-	390 ε 51600	372	460		493		495					1460 1540					<u>13(2).</u> 238-251 27
194.	F C C C C C C C C C C C C C C C C C C C	all-E-	387,5 ε 47700	369	452		524		510	+		+		3040 2520				str. 353P, in 50mM MES, 5mM EDTA, pH 6.5, 20ºC, τ _{rec} 10-12 h	Bioorgan .Khim. 1987, 13(2),
		13Z-	383 ε 43200	366	443		503		508	+				2690 2880				str. 353P, in 50mM MES, 5mM EDTA, pH 6.0, 20°C. all-E-BRA cycle has "M" and compared with BR cycle. In 13Z- BRA cycle"M" absent and have at least 2 long-waved intermediates. L-D- adaptation drastically retarded.	238-251 238-251 Biokhim ia (Rus), 1987, 52(9), 1559- 1569. Biokhim ia (Rus.), 1993, 58(6), 819-826 Colloque INSER M 1992, 221, 167 -170
		all-E-					514			+	395							100 mM NaCl, 5 mM MES, 3 mM potassium citrate, pH 6.0	Sensors and Actuator s B: 1997.

	Structure	Isomer			λ _{max} (nr	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	S		М	%	ratio	cm ⁻¹			CD	others	
					ļ		(P)	DA	LA]			all-E/13Z-		NH₂OH	all-E-RET			
																			<u>39(1-3),</u> 218-221 Mol.
																			<u>Cryst.</u> <u>Liq.</u> <u>Cryst</u>
																			<u>2000,</u> <u>345,</u> <u>317-322</u>
195.		all-E-	389 ε 46500	375	450		518		506	+		+		2920 2460				str. 353P, in 50mM MES, 5mM EDTA, pH 6.5, 20 ⁰ C, τ _{rec} 10-12 h	Bioorgan <u>.Khim.</u> <u>1987,</u> 13(2)
		13Z-	385 ε 42100	369	439		503		506					2900 3020					238-251 27
196.		all-E-	385ª		448ª			480						1490				100 mM Hepes buffer	Photoche
	BrH ₂ C								484	+	410			1660				pH 7.0. τ _{1/2Kdec} 35 μs	mPhotob iol 1983 38(2) 197-203
197.	(CH ₃) ₂ N	all-E-	438ª	400ª	533ª		570			+				1220				20mM HEPES pH 7.0. BRA cycle similar to BR "K" and "M", "L" not observed.	Biochem 1985. 24(5). 1260 - 1265
		all-E-	442		550			535	545					-510 -170				pH 7.0 in water	Photoche mPhotob iol 1981 33(4) 483-488
		all-E-					570 611 618											in water. pH 7.0 pH 2.5 pH 0.5	BiophysJ 1989 56(6) 1259- 1265
		all-E-	442		550			535	545					-510 -170	destroyed after 5.5 h			in distilled water or 67 mM phosphate buffer, pH 7.0, τ_{rec} BRA535 nm 20 h	JACS. <u>1980.</u> 102(27), 7947 -

	Structure	Isomer			^λ max (nr	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reactio	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA	1			all-E/13Z-		NH₂OH	all-E-RET			
																			<u>7949</u>
																		Atomic force sensing (AFS) for dynamically probe BRA protein conformational changes with microsecond time resolution. BRA reduced by NABH ₄	<u>PNAS</u> <u>1997.</u> 94(15). 7937- 7941
																		Spin-labeled Pigments (BRA mutants A103C, M163C, or E74C). Reduction reaction with NH ₂ OH is light- catalyzed in the A103C-labeled pigment, but not in E74C or M163C. ESR data. BRA reduced by NABH ₄	JBiolChe m 2000 275(28) 21010- 21016
																		Protein- <i>b</i> -lonone Ring Interactions. Second harmonic generation (SHG) to probe the light-induced dipolar changes.	JPhysCh em B 2003 107(25) 6221- 6225
198.		all-E- 13Z-	367 364	346	424		493, 460sh 475		474	+	+			1420				str. 353P, in 50mM MES, 5mM EDTA, pH 6.5, 20 ⁰ C, τ _{rec} 10-12 h	<u>29</u>
	F	all-E- 13Z-					496 473		478		+			2660				str. 353P, in 50mM MES, 5mM EDTA, pH 6.0, $25^{\circ}C.\tau_{Mdec} > 1$ min L-D-adaptation drastically retarded.	

	Structure	Isomer			λ _{max} (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	ocycle	H⁺- gump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC		Pigment	s		М	%	ratio	cm ⁻¹			CD	others	1
199.	CF ₃ CF ₃	all-E-			410ª		(P) 442	DA					all-E/13Z-	1700	NH₂OH replaced in 12-24 h	all-E-RET unstable		str. M1 ¹⁹ F-NMR δ -56.9 ppm In 5% DDM / D ₂ O	J.Phys. Chem. 1996. 100(21). 9172 - 9174
200.	F ₃ C CF ₃	all-E-			429ª		452							1200	replaced in 12-24 h	unstable		str. M1 ¹⁹ F-NMR δ -66.2 ppm In 5% DDM / D ₂ O	J.Phys. Chem. 1996. 100(21), 9172 - 9174
201.	H ₃ co	all-E-					480			+		15						str. S9 in distilled water	Biochem Biophys. Res. Com 1977. 78(2). 669-675
202.		all-E-					510			+		31						str. S9 in distilled water	Biochem Biophys. Res. Com 1977. 78(2), 669-675
203.		all-E-	380	350, 367, 375	419			485	473					3250 2720				str. R1, in 10mM HEPES buffer, pH 7.0	Photoche m.Photo biol., 1984, 39(5), 661-665
204.		all-E-	368	351	410			476	465					3380 2880				str. R1, in 10mM HEPES buffer, pH 7.0	Photoche m.Photo biol., 1984, 39(5), 661-665
205.		all-E-	356	333, 349, 367	398			445	457					2650 3240				str. R1, in 10mM HEPES buffer, pH 7.0	Photoche m.Photo biol., 1984,

	Structure	Isomer			λ _{max} (n	m); ε (Μ [.]	⁻¹ cm ⁻¹)			Photo	ocycle	H⁺- gump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	(P)		S I A		М	%	ratio	cm ⁻¹		all_E_RET	CD	others	
													an- <u>, 192</u> -						<u>39(5),</u> <u>661-665</u>
206.		all-E-	403ª	380	470			535	535					2950 2950			507+ /575-	str. R1, in 10mM HEPES buffer, pH 7.0	Photoche m.Photo biol., 1984, 39(5), 661-665
207.		all-E-		376	454		510							2300					Photoche m.Photo biol. 1993. 58(5), 701-705.
208.		all-E-	425		503		574							2500				in 10 mM HEPES buffer. τ_{rec} 30 min	Photoche m.Photo biol. 1992, 56(6), 921-927.
209.		all-E-	425		502		594/ 505					173		3100				in 10 mM HEPES buffer. τ_{rec} 30 min. Two bands or two species of BRA formed in depend of Ret/BO ratio.	Photoche m.Photo biol. 1992, 56(6), 921-927.
210.		all-E-	425		504		584					63		2700				in 10 mM HEPES buffer. τ _{rec} 2 h	Photoche m.Photo biol. 1992, 56(6), 921-927.
211.		all-Ē- 2Z-	362°				+	482	485	+	370	+			stable during 4h	replaced in several hours		30 mM sodium phosphate buffer, pH 7.2.	Photoche m.Photo biol. 1986. 43(3). 297 -303

	Structure	Isomer		2	^λ max (nr	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	-
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			
212		all-E-		353	425		504							3700					Photoche m.Photo biol. 1993. 58(5), 701-705.
		all-E-	368ª ε 47000		425°		504 ε 43000							3700		relatively stable		in 200 mM potassium phosphate buffer, pH 5.0, in the presence of NaCl. τ_{rec} BRA rate was about 3 times faster than BR.	<u>JChemS</u> <u>oc Che</u> <u>mComm</u> <u>un 1982</u> (1) 44- <u>46</u>
		all-E-	370ª			400	442	442	480	+	390	++	88\12 37\63		τ _{1/2dest} 40 min	replaced	440+	str. R1M1, in 10 mM sodium phosphate buffer (pH 6.8) or 10 mM HEPES buffer (pH 6.8) ratio RCHO:BO from 1/12 - 1/1	Biochem 1984 34(5) 838-843 Biochem 1988
							503	503	503	+	-65°C 390 -65°C	++	87\13 83\17		τ _{1/2dest} 200 min	replaced	460+ 530-	ratio RCHO:BO < 1 / 10 BRA442 converted in BRA503 during several days.	<u>27(7)</u> 2416- 2419
213		all-E-	395 381°	369	467		552	546	552 ε 54000	+		51		3300 3100 3300		Not displaced in 24h		str. R1S9, 4 ⁰ C. τ _{rec} 15 min - BRA rather than BR rate. BRA does show light-dark adaptation. Full analysis of the ¹ H- NMR spectrum.	Recl. 1993, 112(4), 237-246 Recl. 1994, 113(2), 99 - 108
214		all-E-	416 402°	391	490			582 / 504		+		20		3230 570	destroyed	Not displaced in 24h		str. R1S9, 4 ⁰ C. τ _{rec} BRA rather than BR rate. BRA582 band converted in BRA504 in 2 h.	Recl. 1993, 112(4), 237-246

	Structure	Isomer			λ _{max} (n	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	ocycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigment	s		М	%	ratio	cm ⁻¹			CD	others	1
215.		all-E-	372 358°	355	428		(P)	DA 501	LA 501 ε 47000	+		23	all-E/13Z-	3410 3410	NH₂OH	all-E-RET Not displaced in 24h		str. R1S9, 4ºC. τ _{rec} 30 min. L-D adaptation absent.	Recl. 1993, 112(4), 237-246
216.		all-E-	410ª		480ª			513	518	+	405			1390 1580				100 mM Hepes buffer pH 7.0. τ _{1/2Kdec} 100 μs	Photoche mPhotob iol 1983 38(2) 197-203
217.		all-E- rac	397ª ε 47000 395	373	467	438	552 ε 57000	547	552			52		3300 3130 3300				str. R1S9, 4 ⁰ C. τ _{rec} 20 min - BRA rather than BR rate. 1R BRA formed 2.1 times more rapidly than1S BRA rate.	<u>Recl.</u> <u>1992.</u> <u>111(1),</u> <u>29 - 40.</u>
		all-E- (1R)				441	552 ε 56000	547	552			48		3300 3130 3300				str. R1S9, 4 ⁰ C. τ _{rec} 10 min. CD(1R-CHO) 273(+)/383(+)	
		all-E- (1S)				436	552 ε 62000	547	552			44		3300 3130 3300				str. R1S9, 4° C. τ_{rec} 21 min. CD(1R-CHO) 273(-)/383(-) full analysis of the ¹ H- NMR spectrum	<u>Recl.</u> 1994 113(2), 99 - 108
218.		all-E-	400		465	430- 460	564			+		90		3780				τ_{rec} 68 min, 2°C. BRA does show light- dark adaptation.	<u>JACS</u> <u>1986.</u> <u>108(20)</u> <u>6410 –</u> <u>6411</u>
		all-E-	400	376	465	435		564	570 ε 60000	+		90		3780 3950					<u>Recl.</u> 1989. 108(3). 83 - 92

	Structure	Isomer			λ _{max} (n	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	is with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigment	s		М	%	ratio	cm ⁻¹			CD	others	-
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
219.		all-E-	415		485		509, 596			+		20		970 3840				τ_{rec} 16 h, L-D adaptation absent	<u>JACS</u> <u>1986.</u> <u>108(20)</u> <u>6410 –</u> <u>6411</u>
		all-E-	415	388	485	435	509, 596							970 3840					<u>Recl.</u> <u>1989.</u> <u>108(3),</u> <u>83 - 92</u>
220.		all-E-	395	267, 381	277, 321, 463		493		501	+				1320 1640				str. 353P, in 50mM MES, 5mM EDTA, pH 6.5, 20 ⁰ C, τ _{rec} 10-12 h	<u>29</u>
		2Z-	390				498		495										<u>29</u>
		all-E-	395°					492	497	+	395	++			reasonably stable	reasonab ly stable		30 mmol sodium phosphate buffer, pH 7.2. "O"-580-590nm	Photoche m.Photo biol. 1986.
		6Z-					460	492	497				6Z- 60/40 all-E		in dark de- composed within 30 min	in dark decompo sed within 30 min		Slow BRA cycle in 5 times than BR cycle.	<u>43(3).</u> 297 -303 18
221.		all-E-	405°				+	460-	460-	+	405	+	10 62-		unstable	unstable		30 mM sodium	Photoche
221.								480	480						decompos ed within 1h	decompo sed within 1h		phosphate buffer, pH 7.2.	m.Photo biol. 1986. 43(3), 297 -303
222.		all-E-		333	390		NO												Photoche m.Photo biol. 1993. 58(5). 701-705.

	Structure	Isomer			λ _{max} (nr	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	<u> </u>	Pigment	.s	1	М	%	ratio	cm ⁻¹			CD	others	1
					_ _ '		(P)	DA	LA	1			all-E/13Z-		NH ₂ OH	all-E-RET		<u> </u> '	<u> </u>
223.		all-E-		369	425		472							2300					<u>Photoche</u> <u>m.Photo</u> <u>biol.</u> <u>1993.</u> <u>58(5).</u> <u>701-705</u>
224.		all-E-	398	382	460			490						1330				str. S 9	<u>Tetrahed</u> ron Lett. <u>1999,</u> <u>40(13),</u> <u>2645-</u> <u>2648</u>
		all-E-																electronic and structural properties of retinal analog were studied using semiempirical, ab initio Hartree-Fock, and DFT methods	J. Chem. <u>Phys.</u> <u>2006, V.</u> <u>125,</u> <u>144901</u>
225.	Colorado o	all-E-		382	472		540							2700					Photoche m.Photo biol. 1993. 58(5). 701-705.
226.		all-E-		374	456		502							2000					Photoche m.Photo biol. 1993. 58(5). 701-705
227.	Sando.	all-E-		411	470		472							0					Photoche m.Photo biol. 1993. 58(5). 701-705.

	Structure	Isomer			^λ max (nr	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigment	s		М	%	ratio	cm ⁻¹		1	CD	others	1
							(P)	DA	LA	1			all-E/13Z-		NH ₂ OH	all-E-RET			
228.		all-E-	365	353	420		432											str. S 9 low yield	Tetrahed ron Lett. 1999, 40(13), 2645- 2648
229.		all-E-	399	385	461		499							1650				str. S 9 electronic and structural properties of retinal analog were studied using semiempirical, ab initio Hartree-Fock, and DFT methods	Tetrahed ron Lett. 1999, 40(13), 2645- 2648 J. Chem. Phys., 2006, V. 125, 144901
230.		all-E-		342	407		NO												Photoche m.Photo biol. 1993. 58(5), 701-705
231.		all-E-		371	450		482							1500					Photoche m.Photo biol. 1993. 58(5). 701-705
232.		all-E-		370	446		480							1600					Photoche m.Photo biol. 1993. 58(5). 701-705
	Structure	Isomer			^λ max (nr	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
------	--	---------------	--------------	-----	----------------------	-----------------------	---------------------------------	----------	------------	---------	-----------	-----------	----------------	------------------	---	-------------------------	----	--	---
No			"CHO"	SB	SBH⁺	NC	F	Piaments	3		М	yump %	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA	1			all-E/13Z-	GIII	NH ₂ OH	all-E-RET			
233.	Julia de la como de la	all-E-		392	477		NO												Photoche m.Photo biol. 1993. 58(5).
						Altora	tion of t	ho trim	othylcyc	lohovor		Acyclic	analoge						<u>/01-/05</u>
234		E-	277⁰			I. Altera		ne trime	etnyicyc	lonexer	lic ring.	Acyclic	analogs					In 50 mM sodium	Biochem
234.			257ª				NO											phosphate buffer pH 7.2. 24 h	1986, 25(8), 2022- 2027.
235.		all-E-	268°				NO											In 50 mM sodium phosphate buffer pH 7.2. 24 h	Biochem <u>1986</u> , <u>25(8)</u> , <u>2022</u> - <u>2027</u> , 18
236.		all-E-			382		446		446				40/60 69/31	3750 3750				pH 7.0, 50 mM Hepes	Photoche mPhotob iol 1991 54(6) 969-976
		all-E-	335		385		430 ε 6000		430			NO		2700		displaced after 24 h		str. R1S9 BRA formation rates of the in H_2O compared to BR. Irreversible decomposition on 50% after 10 min illumination.	EurJBioc hem 1984 140(1) 173-176
		all-E- 2Z-	312° 310°				422 420		425 425	NO		NO NO			moderately stable destroyed after1 h, in the dark	displaced after 1 h		In 50 mM sodium phosphate buffer pH 7.2. 24 h. no flash-induced absorption changes. $\tau_{1/2rec}$ 20 min	Biochem 1986, 25(8), 2022- 2027.

	Structure	Isomer)	Max (nr	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	P	Pigments	S		М	%	ratio	cm ⁻¹			CD	others	1
237.		all-E-	351		405		(Ρ) 452 ε 12000	DA	LA 452			NO	all-E/13Z-	2600 2600	NH₂OH	all-E-RET displaced after 24 h		str. R1S9 BRA formation rates of the in H_2O compared to BR. Irreversible decomposition on 50% after 10 min	EurJBioc hem 1984 140(1) 173-176
238.		all-E-					460	460	500				75/25 60/40					illumination pH 7.0, 50 mM Hepes The formation stable long-lived BRA 500 nm under illumination. k _{decay} 44.9 x 10 ⁻⁴ s ⁻¹ at 303 K.	Photoche mPhotob iol 1991 54(6) 969-976
239.		all-E-			418		470	470	470				72/28 80/20	2650 2650				pH 7.0, 50 mM Hepes	Photoche mPhotob iol 1991 54(6) 969-976
		all-E-	364		422		472 ε 11000		472			NO		2600 2600				str. R1S9 BRA formation rates of the in H_2O compared to BR. Irreversible decomposition on 30% after 10 min illumination	EurJBioc hem 1984 140(1) 173-176
		all-E- 2Z-	347° 346°				462 460		466 466	+	365	+			reasonably stable destroyed after 1.5 h, in the dark	displaced after 1.5 h		In 50 mM sodium phosphate buffer pH 7.2. τ _{1/2rec} 10 min	Biochem 1986, 25(8), 2022- 2027,
240.		all-E- 2Z- 4Z-	370 ^f 370 ^f 370 ^f				NO NO NO												Photoche mPhotob iol 1985 41(2) 171-174

	Structure	Isomer		2	λ _{max} (ni	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			
241.		all-E-					460		500				46/54 52/48					pH 7.0, 50 mM Hepes The formation stable	Photoche mPhotob
																		long-lived BRA 500	iol 1991
																		nm under illumination. k_{decav} 15.9 x 10 ⁻⁴ s ⁻¹ at	<u>54(6)</u> 969-976
																		303 K.	
242.		all-E-			401		490		490				37/63 63/37	4550 4550				pH 7.0, 50 mM Hepes	Photoche mPhotob
													00,01						iol 1991
																			<u>54(6)</u> 969-976
243.		all-E-	364ª				487			+					stable	displaced		τ _{1/2rec} 285-305 s	JACS
							ε 28000		487		365	++			destroyed after 5h in	after 24 h		Raman spectra data	<u>1984</u> 106(26)
			0.500				20000								the dark				<u>8325-</u>
		2Z-	358ª				477												<u>8327</u>
									477										18
244.		all-E-	364ª				487 ۶		487	+	363	++			stable destroved	displaced		τ _{1/2rec} 160-180 s Raman spectra data	<u>JACS</u> 1984
							28000								after 5h, in				106(26)
		2Z-	361ª				477								the dark				<u>8325-</u> 8327
									477										
245.		all-E-	373ª				487			+					stable	displaced		τ _{1/2rec} 160-180 s	JACS
							8		487		372	++			destroyed	after 72 h		Raman spectra data	<u>1984</u>
							28000								the dark				<u>106(26)</u> 8325-
		2Z-	368ª				476		476										<u>8327</u>
									470										18
246.		all-E-	400	373	468		527			+				2400					<mark>17</mark>
					рка 7.4		рка 12.1												Retinal
																			Proteins
																			205-216
1		all-F-	393		465	420/	538	528						2600		stable		str R1S9 τ 16 min	FurIBioe
		an- <u>-</u> -	000		400	460	000	ε	538	+		30		2900		310010		BRA formation rates	hem_
1								34000										of the in H ₂ O compared to BR	1984 140(1)
1																			173-176

	Structure	Isomer		2	ا ^ر max (nr	n);ε(Μ	¹ cm ⁻¹)			Photo	cycle	H⁺- numn	Isomer	OS BR	Reaction	is with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	S		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
		all-E-	400ª				513	540				++							<u>18</u>
		all-E-	400 ^f ε 52400				524	519	528						stable destroyed after 3h, in the dark	displaced after 4.5h		τ _{1/2rec} 156 s	Photoche mPhotob iol 1985 41(2)
		2Z-	400 ^f ε 41600				522		528						stable destroyed after 3h, in the dark	displaced after 4.5h		τ _{1/2rec} 168 s	<u>1/1-1/4</u>
		6Z-	400 ^f ε 40700				487		528						unstable destroyed after 35 min , in the dark	displaced after 30 min		τ _{1/2rec} 750 s	
		all-E-			468			530	532				59/41 25/75	2500 2550				pH 7.0, 50 mM Hepes	Photoche mPhotob iol 1991 54(6) 969-976
		all-E-					527 558 533											in water. pH 7.0 pH 2.5 pH 0.5	BiophysJ 1989 56(6) 1259- 1265
		all-E-	400	373	468		527			+				2400				10 mM Hepes buffer, pH 6.5 at 25°C for 1 hr. pKa (SBH⁺) = 7.4, pKa (SB BRA) = 12.1	<u>PNAS</u> <u>1986,</u> <u>83(10),</u> <u>3262-</u> <u>3266.</u>
		all-E-					532											Molecular Dynamics Study BRA	Biochem 1994 33(12) 3668- 3678
		all-E-					535												BiophysJ 1995

	Structure	Isomer			λ _{max} (nr	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- gump	Isomer	OS BR	Reaction	าร with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigment	s		М	%	ratio	cm ⁻¹		1	CD	others	
							(P)	DA	LA	1			all-E/13Z-		NH ₂ OH	all-E-RET			
																		Molecular Dynamics Study BRA	<u>68(4)</u> <u>1270-</u> <u>1282</u>
		all-E-	380ª				530											Protein- <i>b</i> -lonone Ring Interactions. Second harmonic generation (SHG) to probe the light-induced dipolar changes.	JPhysCh em_B 2003 107(25) 6221- 6225
247.		all-E-		373	468	1	527			1		+		2400					<u>15</u>
		all-E-	390ª					520	522			+							<u>18</u>
248.		all-E-	364		423		483 ε 29000		483		390	very Iow		2900 2900				str. R1S9 slow decomposition under irradiation	EurJBioc hem 1984 140(1) 173-176
249.		all-E-	307ª 2 sh				321							1420				in 20 mM Tris/HCl and 4 M NaCl at pH 7.0. τ_{rec} 40 min Mutagenesis studies and two photon spectroscopy studies argue against a discrete charge in the binding site but not against the local electrostatic fields, which would fulfill the conditions of the original point charge model. 11-fold inhibition of the native retinal Incorporation in BRA.	JBiolChe m. 1995, 270(50), 29668- 29670
250.	H ₃ CO	all-E-					572 615											in water. pH 7.0 pH 2.5	Biophys. <u>1989</u> 56(6)

	Structure	Isomer			λ _{max} (n	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	\$		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
							590											рН 0.5	<u>1259-</u> 1265
251.		all-E-	377	363	428		480			+				2500					17
	F ₃ C				рк _а 7.1		рк _а 11.9												Retinal
																			Proteins
																			<u>1987</u> 205–216
		all-E-	377	423	468		480			+				2500				10 mM Hepes buffer,	PNAS
																		pH 6.5 at 25°C for 1 h.	<u>1986,</u> 83(10)
																		pKa (SB BRA) = 11.9	<u>3262-</u>
252.		all-E-					565											str. ET1001. In 4 <i>M</i>	<u>3266.</u> Photoche
																		NaCl, 25 mM Tris-HCl	mPhotob
	",																	<1 min	<u>60(4)</u>
253		all-F-						479											<u>388-393</u> Bioorgan
200.		407						470											Chem
		132-						479											<u>1989</u> 17(2)
		5Z-						480											<u>217-223</u>
		5Z,13Z-						480											
254.	$X \land \land \land \land \land$	all-E-	269 364	270 364	399 409		450			NO						displaced in 2 h		100mM NaCl, 5 mM MES, pH 6.0, τ _{mc} 10	<u>29</u>
			8	381														min.	Rus. J.
			49900				450											ET1001	Chem.,
	0						440											D96N	2002,
							445sh											JW5, No photo-responses	<u>28(6),</u> 487–493
																		on light flash, no	
																		cyclic photoreactions BRA.	$\frac{M1ronov}{a E.V.}$
																			Ph.D.
																			<u>2002</u>
								J. Misc	ellaneou	us modi	fications	5							

	Structure	Isomer			^λ max (nr	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	;		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
255.	Cal and a constraint of the co	E-		418	494													Experimental and calculated data of UV- Vis spectra	Organic Lett. 2000 2(3), 269–271
256.	(Janeo	all-E-	435ª		575		620							3300	τ _{1/2dest} 40 min			τ _{1/2rec} 17h	<u>JPhotoch</u> emPhoto biol C: 2003 4(3) 179–194
		all-E-					621							3300				τ _{1/2rec} 17h	<u>Tetrahed</u> ron Lett. <u>1998,</u> <u>39(1/2),</u> <u>5-8</u>
		all-E-		414	515													Experimental and calculated data of UV- Vis spectra	<u>Organic</u> Lett. 2000 2(3). 269–271
		all-E-	435ª		575		620							3300	τ _{1/2dest} 40 min			τ _{1/2rec} 17h	Photoche mPhotob iol 2001 74(6) 837–845
257.	Jan pro	all-E-		430	541		644							3000					Photoche m.Photo biol. 1993. 58(5), 701-705.
		all-E-	446°	430ª	541ª		644							2960					JACS
		13Z-	444°	426ª	542ª		631							2600					<u>1990.</u> <u>112(20),</u> <u>7398 –</u> <u>7399</u>
		all-E-	446ª	430	542ª		644							2960					

	Structure	lsomer		î	^λ max (nr	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- numn	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
		211-E-	155ª		542		645							3000	a 1 min			an th	Photoche m.Photo biol. 1991. 54(4). 625-631
			100		572		040								C1/2dest 1 11111			U1/2rec +1	<u>JPhotoch</u> emPhoto biol_C: 2003 4(3) 179–194
							644											Transient absorption studies of the BRA shown that no transient absorption changes were detected.	J.Phys.C hem. A 1998 102(28), 5481– 5483.
		all-E-	4553	430	541		045							0000				Experimental and calculated data of UV- Vis spectra	Organic Lett. 2000 2(3). 269–271
		a⊪-⊏-	455		542		645							3000	τ _{1/2dest} 1 min			τ _{1/2rec} 4h	Photoche mPhotob iol 2001 74(6) 837–845
258.	Finger 10	all-E-		436	572		730							3800					Photoche m.Photo biol. 1993. 58(5), 701-705.
		all-E-	463ª		572ª		694 / 748							2400 4100				$\tau_{1/2\text{rec}}40\text{min}$	JPhotoch emPhoto biol C: 2003

	Structure	Isomer			λ _{max} (nr	n);ε(Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	is with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	;		М	%	ratio	cm ⁻¹			CD	others	
		all-E-	463ª		572		(P) 694 / 748	DA	LA				all-E/13Z-	2400 4100	NH₂OH	all-E-RET		τ _{1/2rec} 40 min	4(3) <u>179–194</u> <u>Photoche</u> <u>mPhotob</u> <u>iol 2001</u> <u>74(6)</u> 837–845
25	9. CF ₃	all-E-		401	489		520							1200					Photoche m.Photo biol. 1993. 58(5). 701-705
		all-E-	416°	401ª	489ª		520							1220					<u>JACS</u> <u>1990.</u> <u>112(20),</u> <u>7398 –</u> <u>7399</u>
26		all-E-		401	443													Experimental and calculated data of UV- Vis spectra	Organic Lett. 2000 2(3), 269–271
26		all-E-		425	405		475 475							1200					Photoche m.Photo biol. 1993. 58(5). 701-705.
																			<u>1990.</u> <u>112(20),</u> <u>7398 —</u> <u>7399</u>

	Structure	Isomer		1	^λ max (nr	n);ε(Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- numn	Isomer	OS BR	Reaction	is with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	;		М	%	ratio	cm ⁻¹			CD	others	
262		all-E-			450		(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET		Experimental and	Organic
202.		a⊪-∟-			430													calculated data of UV-	Lett.
																		Vis spectra	<u>2000</u> 2(3),
																			<u>269–271</u>
263.		all-E-	438ª		522ª		618/ 620							3000	τ _{1/2dest}			τ _{1/2rec} 20h	JPhotoch emPhoto
							020							5100	4 11111				biol C:
																			<u>2003</u> 4(3)
																			<u>179–194</u>
		all-E-					618							3000				$\tau_{1/2rec}20h$	Tetrahed ron Lett.
																			$\frac{1998}{39(1/2)}$
																			<u>5-8</u>
		all-E-	438ª		522		620							3000	τ _{1/2dest} 4 min			$\tau_{1/2rec}$ 20h	Photoche
																			<u>mPhotob</u> iol 2001
																			<u>74(6)</u> 837–845
264		all-F-	440ª		540ª		629/							2600	Turn I			τια 50min	IPhotoch
204.		an-r-	0		040		674							3700	100 min			t _{1/2rec} Johnn	emPhoto
																			<u>2003</u>
																			<u>4(3)</u> 179–194
		all-E-					674							3700				τ _{1/2mc} 53min	Tetrahed
																		1,2100 0 0 1 1 1 1	ron Lett.
																			$\frac{39(1/2)}{58}$
			4.403		540		000/							0000					<u>5-0</u>
		all-E-	440°		540		629/ 674							3700	τ _{1/2dest} 100 min			$\tau_{1/2rec}$ 50min	<u>Photoche</u> mPhotob
																			<u>iol 2001</u> 74(6)
																			<u>837–845</u>

	Structure	Isomer		2	^l max (nr	n);ε(M⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- gump	Isomer	OS BR	Reaction	is with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	;		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
265.	-Japo	all-E-	438ª		535ª		630/ 674							2800 3900	τ _{1/2dest} 9 h			τ _{1/2rec} 50min	JPhotoch emPhoto biol C: 2003 4(3) 179–194
		all-E-					674							3860				τ _{1/2rec} 50min	<u>Tetrahed</u> ron Lett. 1998, <u>39(1/2),</u> 5-8
		all-E-	438ª		535		630/ 674							2800 3900	τ _{1/2dest} 9h			τ _{1/2rec} 50min	Photoche mPhotob iol 2001 74(6) 837–845
266.	for a construction of the second seco	all-E-	436ª		532ª		628/ 673							2900 3900	$\tau_{1/2dest}10 \ h$			τ _{1/2rec} 53min	<u>JPhotoch</u> emPhoto biol_C: 2003 4(3) 179–194
		all-E-					673							3900				τ _{1/2rec} 53min	<u>Tetrahed</u> ron Lett. <u>1998,</u> <u>39(1/2),</u> <u>5-8</u>
		all-E-					675											In water. $\tau_{rec} 2$ h. Transient absorption studies of the BRA shown that no transient absorption changes were detected.	J.Phys.C hem. A 1998 102(28). 5481– 5483.
		all-E-	436ª		532		628/ 673							2900 3900	$\tau_{1/2dest}10$ h			$\tau_{1/2rec}53min$	Photoche mPhotob iol 2001

	Structure	Isomer		λ	^ک max ^{(nr}	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	P	vigments	3		М	%	ratio	cm ⁻¹			CD	others	1
		_	 '	ļl			(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
																			<u>/4(6)</u> <u>837–845</u>
		<u> </u>						<u> </u>											
267.	⊢	all-E-	443ª		526ª		630 / 672							3200 4130	$\tau_{1/2dest} 3 h$			$\tau_{1/2rec}$ 48min	JPhotoch emPhoto
							-												biol C:
																			<u>2003</u> 4(3)
																			179–194
		all-E-					672							4130				$\tau_{1/2rec}$ 48min	Tetrahed
																			ron Lett.
																			<u>39(1/2),</u>
																			<u>5-8</u>
		all-E-	443ª		526		630 /							3200	$\tau_{\text{1/2dest}} 3 h$			$\tau_{\text{1/2rec}} 48 min$	Photoche
							072							4130					iol 2001
																			<u>74(6)</u> 837_845
																			057-045
268.		all-E-	450ª		558ª		632/ 686							3000 3340	τ _{1/2dest} 12 min			$\tau_{1/2rec}$ 47min	JPhotoch emPhoto
							000							0040	12 11111				biol C:
																			<u>2003</u> 4(3)
																			<u>179–194</u>
		all-E-					686							3340				$\tau_{1/2rec}$ 47min	Tetrahed
																			ron Lett.
																			<u>39(1/2),</u>
																			<u>5-8</u>
		all-E-	450ª		558		632/							3000	τ _{1/2dest}			$\tau_{1/2\text{rec}}47\text{min}$	Photoche
							080							3340	12 min				iol 2001
																			<u>74(6)</u> 837 845
		<u> </u>														<u> </u>			057-045
269.	V SJAAA	all-E-	653ª		562ª		664							2700				τ _{1/2rec} 72h	JPhotoch emPhoto
1																			biol C:
1		1		1	1	1				1	1			1			1		2003

	Structure	Isomer		2	^ک max (nı	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	rigments	;		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			4(3)
																			<u>179–194</u>
		all-E-	453ª		562		664							2700				τ _{1/2rec} 72h	Photoche
																			mPhotob iol 2001
																			<u>74(6)</u> 837–845
270		all-F-	450ª		538ª		595							1800	Tuess			τ	IPhotoch
270.) = 1		400		000		000							1000	6 min			1/2rec OON	emPhoto biol. Cu
																			<u>2003</u>
																			4(<u>3)</u> 179–194
		all-E-					596							1800				τ _{1/2rec} 36h	Tetrahed
																			ron Lett. 1998,
																			<u>39(1/2),</u> 5-8
		all-F-	450ª		538		595							1800	T			- 26b	Photoche
			100		000		000							1000	6 min			11/2rec SOII	mPhotob
																			<u>74(6)</u>
																			<u>83/-845</u>
271.) - Jane	all-E-	444ª		533ª		629							2900				$\tau_{1/2rec}$ 96h	JPhotoch emPhoto
																			<u>biol C:</u> 2003
																			<u>4(3)</u>
							609							2200					Tetrahad
		all-E-					000							2300				τ _{1/2rec} 4 days	ron Lett.
																			<u>1998,</u> <u>39(1/2),</u>
																			<u>5-8</u>
		all-E-	444ª		533		629							2300				$\tau_{1/2rec} 4 \text{ days}$	Photoche mPhotob
																			iol 2001

	Structure	Isomer			^λ max (nr	n);ε(Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- gump	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			74(6)
																			<u>837–845</u>
272.	For a factor of the second sec	all-E-	246 290 355 467	245 285 355 445	241 302 328 579		308 605		306 457					740				τ _{rec} 70h	<u>29</u>
		_	10.00	1.1.0	101		- 10		602					660					
273.) je je so	E-	436ª	418	494		519			NO				980				τ _{rec} 15days	Photoche m.Photo biol. 1991. 54(4). 625-631
		E-					520			NO								The pigment was found to be stable at pH 7; however, no steady-state absorption changes were detected.	J.Phys.C hem. A 1998 102(28), 5481– 5483.
		E-	436ª				519 br			+	400	20						WT BO. 10° C. τ_{rec} 20 days, pH 9.5. "M" like 400 nm forms???? Sample possible contaminated by BR due to REToxime hydrolisys.	Photoche mPhotob iol 1996, 64(5), 867-869
274.	J. Lago	all-E-		401	443		475							1500					Photoche m.Photo biol. 1993. 58(5), 701-705.
		all-E-	403ª		443ª		514							3100				τ _{1/2rec} 36h	JPhotoch emPhoto biol C: 2003 4(3) 179–194
		all-E-	403ª		443		514							3100				$\tau_{1/2rec}$ 36h	Photoche mPhotob

	Structure	Isomer			λ _{max} (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photod	cycle	H⁺- pump	Isomer	OS BR	Reaction	าร with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	s	 	М	%	ratio	cm ⁻¹		1	CD	others	1
							(P)	DA	LA	•			all-E/13Z-		NH ₂ OH	all-E-RET			
			Ţ																iol 2001 74(6) 837–845
275.	Hora and	all-E-		439	560		644							2330				τ _{rec} 23days	Photoche m.Photo biol. 1993. 58(5), 701-705.
		mixture 69%-E- 31%-Z-	465ª	439ª	560 ª		644							2330				τ _{1/2rec} 13 days	Photoche m.Photo biol. 1991. 54(4), 625-631
		all-E-	465ª		560ª		642							2300	τ _{1/2dest} 1 min			τ _{1/2rec} 13 days	<u>JPhotoch</u> emPhoto biol_C: 2003 4(3) 179–194
		all-E-					644							2300				τ _{1/2rec} 13 days	<u>Tetrahed</u> ron Lett. <u>1998,</u> <u>39(1/2),</u> <u>5-8</u>
		all-E-	465ª		560		640							2300	τ _{1/2dest} 1 min			τ _{1/2rec} 13 days	Photoche mPhotob iol 2001 74(6) 837–845
276.) Jane 100	all-E-	484ª	450	590		694, 750sh							2540				τ _{rec} 20days	Photoche m.Photo biol. 1991. 54(4), 625-631
		all-E-	473°	450	590		694							2540					

	Structure	Isomer			^λ max ^{(nr}	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			LL CC
		all-E-	482ª		590ª		660/							1700	ture 1 min			c	<u>JACS</u> <u>1990.</u> <u>112(20),</u> <u>7398 –</u> <u>7399</u>
			102				764							3800	1/2dest				JPhotoch emPhoto biol C: 2003 4(3)
		all-E-	482		590		660/ 764							1700 3800	τ _{1/2dest} 1 min			$\tau_{1/2rec} 20min$	Photoche mPhotob iol 2001 74(6) 837–845
277.	CF3	13Z-	506°	388ª	545ª		830							6300					JACS 1990. 112(20), 7398 – 7399
		13Z-	506ª		556		640/ 830							2400 6000	τ _{1/2dest} 1 min			τ _{1/2rec} 10min	JPhotoch emPhoto biol C: 2003 4(3) 179–194
			506ª		506		640/ 830							2400 6000	τ _{1/2dest} 1 min			τ _{1/2rec} 10min	Photoche mPhotob iol 2001 74(6) 837–845
278.) flage	all-E- 13Z-	490° 465°	460ª 450ª	640ª 638ª	~605	795 795							3050 3100				τ _{rec} ~ 18h	JACS <u>1990.</u> 112(20), 7398 – 7399
1		all-E-	493ª		640ª		684/							1000	τ _{1/2dest} 1 min			τ _{1/2rec} 16 min	

		Structure	Isomer			^λ max (nr	n);ε(Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
Ν	lo			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	1
								(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
			all-F-	493ª		640		684/							3100	Train 1 min			740 - 16 min	<u>JPhotoch</u> emPhoto biol_C: 2003 4(3) 179–194
				100		040		799							3100	C1/2dest F TTTT			U1/2rec TO THIN	Photoche mPhotob iol 2001 74(6) 837–845
27	79.) Jane	all-E-		450	590		694							2500					<u>Photoche</u> <u>m.Photo</u> <u>biol.</u> <u>1993.</u> <u>58(5),</u> <u>701-705</u> .
28	80.		all-E-		421	532		601							2200					Photoche m.Photo biol. 1993. 58(5), 701-705.
			all-E-	444 ^c	421ª	532ª		601							2160					JACS
			13Z-	442°	418ª	510ª		596							2830					<u>1990.</u> <u>112(20),</u> <u>7398 –</u> <u>7399</u>
28	81.	CF3	all-E-		450	556		830							5900					Photoche m.Photo biol. 1993. 58(5), 701-705.

	Structure	Isomer			^λ max (nr	n);ε(M⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- gump	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	-
282	\ \	all-E-		455	590		(P) 753	DA	LA				all-E/13Z-	3700	NH ₂ OH	all-E-RET			Photoche
202				400	000		100							0/00					m.Photo
	\mathcal{H}																		<u>biol.</u> 1993.
																			<u>58(5).</u> 701-705.
202				460	640		705							2100					Dhotosha
285		all-⊏-		400	040		795							3100					m.Photoche
	λ																		<u>biol.</u> 1993.
																			<u>58(5),</u> 701-705.
204		- 11 5		405	014		750							0000					
284		a⊪-⊧-		465	614		750							3000					<u>Photoche</u> m.Photo
	K L . L . L																		<u>biol.</u> 1993.
																			<u>58(5),</u> 701-705
			4003	405	014		750							2050				00 days	<u>701-705.</u>
		a⊪-⊧-	496	405	614		750							2950				τ _{rec} 23 days	<u>Photoche</u> m.Photo
																			<u>biol.</u> 1991.
																			<u>54(4).</u> 625-631
			4778		6148		604/							260					
		all-⊏-	4//-		014-		624/ 774							3000				τ _{rec} 10 min	emPhotoch
																			<u>biol C:</u> 2003
																			<u>4(3)</u> 179–194
285		all-E	477		606			662				NO		1400	decompos	stable	640+	str. R1. In 10 mM	JACS
	$ \lor$		ε 61000														/000-	BRA formed were	<u>1965</u> <u>105(3)</u>
																		stable in the dark, only ca. 20%	<u>646-648</u>
1																		reduction in the 662-	<u>19</u>
																		observed at 6 days at	
																		irradiation 80%	
		1		1	1				1	1		1						1	1

ſ		Structure	Isomer		2	λ _{max} (ni	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
	No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	
								(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
																			bleached in 4 h at 20ºC.	JBiolChe
																			Spin-labeled Pigments (BRA mutants A103C, M163C, or E74C). Reduction reaction with NH ₂ OH is light- catalyzed in the A103C-labeled pigment, but not in	m 2000 275(28) 21010- 21016
																			E74C or M163C. ESR data. BRA reduced by NABH ₄	
			all-E					646										640+ /680-	in 20 mM sodium phosphate buffer, pH 7.0. CD spectra.	<u>Chirality</u> 2006 18(2) 72-83
	286.		all-E	475 ε 74000		623	400	500	662 ε 13000				NO		950	decompos ed in 2 h, 20°C	stable	635+ /670-	str. R1 In 10 mM HEPES pH 7.0, 20°C $\tau_{1/2rec}$ ~40min BRA formed were stable in the dark, only ca. 20% reduction in the 662- nm maxima being observed at 6 days at 22°C. Light >530 nm irradiation 90% bleached in 40 min at 20°C.	JACS 1983 105(3) 646-648
	287.		all-E-				480	530											pH 6.5, 20 mM HEPES buffer. 25 ^o C τ_{rec} ~48h	Angew Chem IE 1986 98(3) 284-286
			all-E-					529 529 529											in water. pH 7.0 pH 2.5 pH 0.5	BiophysJ <u>1989</u> 56(6)

	Structure	Isomer		ĵ	^λ max (nr	m);ε(Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			1259-
																		Pulsed photolysis	<u>1265</u>
																		BRA red-shifted	JACS.
																			<u>1989</u> <u>111(9),</u>
																			<u>3203-</u> 3211
288.		all-E-					640											pH 6.5, 20 mM HEPES buffer, 25ºC	Angew Chem IE
																		τ _{rec} ~1h	<u>1986</u> 98(3)
																			<u>284-286</u>
							0.40											in water.	BiophysJ
		all-E-					640 640											рН 7.0 pH 2.5	<u>1989</u> 56(6)
							640											pH 0.5	<u>1259-</u> 1265
289.		all-E-					665											in water. pH 7.0	BiophysJ
		aii- L -					662 661											pH 2.5	<u>56(6)</u>
	-						001											рн 0.5	<u>1259-</u> 1265
290.		all-E-	463ª	420ª	578ª		610							910					Angew. Chem.
																			<u>IE 1997.</u> 36(15).
																			<u>1630 -</u>
291.		all-E-	456ª	422ª	567ª		NO												Angew.
																			<u>Chem.</u> IE 1997.
																			<u>36(15),</u> <u>1630 -</u>
292			296	292	330		NO											<u> </u>	1633 Lettersin
272.				_02	500														OrgChe m 2007
																			$\frac{4(4)}{200,205}$

No CHO' SB SBH' NC Pigments M $\gamma^{\text{PV}}_{\text{S}}$ ratio all-E/132- cm ⁻¹ CD others 293. ζ_{I} all-E- 400 ⁺ 502 522 I		Structure	Isomer			^λ max (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	293.		all-E-	406ª		502		522							760					Photoche
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																				iol 2007
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																				<u>83(1)</u>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																				<u>50-62</u>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																				<u>Lettersin</u>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																				m 2007
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																				<u>4(4)</u>
$\begin{bmatrix} 294. \\ & & \\ &$	204	~	- 11 5	050	0.1.1	100		NO												<u>300-305</u>
$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	294.		all-E-	358	344	422		NO												<u>Lettersin</u> OrgChe
$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$																				m 2007
$\frac{1}{c_{6}H_{5}O_{2}S}$																				<u>4(4)</u>
$\frac{1}{295.} = \frac{1}{\sqrt{16}} + \frac$		CHOS.																		<u>300-305</u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	295		all-E-	511		701		736							680					VII
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	275.	k ,∕∼s ,		011		101		100							000					Internat
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																				Conferen
$\begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $																				ce on Retinal
296. N all-E-482 ^a 482 ^a 657 ^a 700940680+BRA shown photochemical properties remarkably properties remarkably 																				Proteins.
296. N All-E- 482 ^a 657 ^a 700 940 680+ BRA shown photochemical properties remarkably ifferent from that of the shown photochemical properties remarkably ifferent from that of the shown photochemical properties remarkably ifferent from that of the shown photochemical properties remarkably ifferent from that of the shown photochemical properties remarkably ifferent from that of the shown photochemical properties remarkably ifferent from that of the shown photochemical properties remarkably ifferent from that of the shown photochemical properties remarkably ifferent from that of the shown photochemical properties remarkably ifferent from that of the shown photochemical properties remarkably ifferent from that of the shown photochemical ph																				<mark>1996.</mark>
296. All-E- 482° 482° 657° 700 940 680+ BRA shown Angew properties remarkably the properties rem	206			1003	4003	0573		700							0.40			000.		<u>66.</u>
Not properties remarkably reperties remarkably 16(15)	296.		all-E-	482ª	482ª	657ª		700							940			680+	BRA shown	Angew.
different from that of 36(15)																		// 00	properties remarkably	IE 1997.
																			different from that of	<u>36(15),</u>
BR. No changes in 1630 -		1																	BR. No changes in	$\frac{1630}{1622}$
absorption could be																			absorption could be	<u>1055</u>
detected time range of																			detected time range of	
about 100 ns to 10 ms	207			1073	4.402	0003		755							4770			740.	about 100 ns to 10 ms	<u> </u>
$\begin{bmatrix} 297. \\ 1770 \\ 1770 \\ 181-E- \\ 1848^{a} \\ 1866^{a} \\ 1755 \\ 1770 \\ 190 \\ 1770 \\ 190 \\ 1770 \\ 190 \\ 1770 \\ 190 \\ 100 \\$	297.		all-E-	487ª	448ª	666ª		/55							1770		stable	/40+	τ _{rec} ~12h BBA shown	Angew.
																		///0-	photochemical	IE 1997.
properties remarkably <u>36(15)</u>																			, properties remarkably	<u>36(15),</u>
different from that of 1630-																			different from that of	$\frac{1630}{1622}$
BR. No changes in 1033																			the parent state	1033
absorption could be																			absorption could be	
detected time range of																			detected time range of	
about 100 ns to 10																			about 100 ns to 10	

	Structure	Isomer		1	^λ max (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- numn	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No)		"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	
298	8. The second se	all-E-	490ª	452ª	657ª		(P) 698	DA	LA				all-E/13Z-	890	NH₂OH	all-E-RET		BRA shown photochemical properties remarkably different from that of BR. No changes in the parent state absorption could be detected time range of about 100 ns to 10 ms.	Angew. Chem. IE 1997. 36(15). 1630 - 1633
299	P. C. Lando	all-E-	491ª	453ª	665ª		711							970				BRA shown photochemical properties remarkably different from that of BR. No changes in the parent state absorption could be detected time range of about 100 ns to 10 ms. Formation of the blue-shifted species BRA 648 nm under ilumination10 min, but is followed by an even slower process after several days in the dark the initial BRA at 698 nm is partially restored.	Angew. Chem. IE 1997. 36(15). 1630 - 1633
300		all-E-	441		533		NO												VII Internat Conferen ce on Retinal Proteins. 1996. 66
30		all-E-	540		730		766							640					VII Internat Conferen ce on Retinal Proteins. 1996. 66

	Structure	Isomer			λ _{max} (n	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC		Pigment	S		М	%	ratio	cm ⁻¹			CD	others	1
302.		all-E-	502ª				NO	DA					all-E/132-		NH2OH			Computation of Vertical Excitation Energies of Retinal Analogs	J.Compu t.Chem 2006 27(1) 116-123
303.		all-E-	420 ε 17270	390	510			558/ 582						1690 2430	decompos ed in 2 days, 20°C	stable several days		str. S9 in 50 mM phosphate buffer, pH $6.5. \tau_{1/2rec}$ 22.3 min. At acidic pH values, BRA shows a main band at 616 nm, with a minor species absorbing around 592 nm	ChemBi oChem 2005 6(11) 2078- 2087
304.	(North Contraction of the second sec	all-E-	460 ε 5330	428	574			545/ 693						-930 2990	decompos ed in 1 h, 20°C	stable 48 h		str. S9 in 50 mM phosphate buffer, pH 6.5. τ _{1/2rec} 61.2min	<u>ChemBi</u> oChem 2005 6(11) 2078- 2087
305.		all-E-	472 ε 8160	424	610			552/ 571/ 725						-1720 -1120 2600	decompos ed in 1 h, 20°C	stable 48 h		str. S9 in 50 mM phosphate buffer, pH 6.5. τ _{1/2rec} 32.6 min	<u>ChemBi</u> oChem 2005 6(11) 2078- 2087
306.		all-E-	406ª					NO										Computation of Vertical Excitation Energies of Retinal Analogs	J.Compu t.Chem., 2006 27(1) 116-123
307.		all-E- 13Z-					518 500			+ +	390	24	70-90%-Е					$\begin{array}{l} \mbox{H+-pump in JW5 cells} \\ \tau_{rec} \ 15min \\ "O" - 590 \ nm \ \tau_{Odec} \\ 200ms \\ \tau_{1/2Mdec} \ 6ms \end{array}$	<u>JACS</u> 1984, 106(19), 5654- 5659
308.		all-E-	340ª			370	460	460	450	+	350	++			1h,dark	replaced		in distilled water at 25° C pH 6.8. τ_{rec} 3 h, Light-induced absorption changes relatively small,	Biochem 1981. 20(2). 428-435

	Structure	Isomer			λ _{max} (nr	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET		although they are consistent with a BR cycle. There is no apparent L→D- adaption. 'M" produces an absorption near 350 nm that reverts in the dark to the BRA.	18
309.	C OH CO	13Z-				+	NO											str. 353P, in 50mM MES, 5mM EDTA, pH 6.5, 20⁰C	<u>29</u>
310.		all-E- 13Z-					504 486			+ +		7.5	70-90%-Е					H+-pump in JW5 cells inactive in photophosphorylation	<u>JACS</u> 1984, 106(19), 5654- 5659
311.		all-E-					450											Second harmonic generation signal BRA	J <u>ACS</u> 2002, 124(40), 11844- 11845
312.	F ₃ C	all-E-					430											Second harmonic generation signal BRA	JACS 2002, 124(40), 11844- 11845
313.	CF3	all-E-					462											Second harmonic generation signal BRA	JACS 2002, 124(40), 11844- 11845
314.		all-E-					480											Second harmonic generation signal BRA	JACS 2002, 124(40), 11844- 11845

	Structure	Isomer		2	^λ max ^{(nr}	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
315.		all-E-					430											Second harmonic generation signal BRA	JACS 2002, 124(40), 11844- 11845
316.		13Z-	368 ε 37700	358	432		485		450					2530 930				str. 353P, in 50mM MES, 5mM EDTA, pH 6.5, 20ºC, τ _{rec} 13 h	Bioorgan <u>.Khim.</u> <u>1987.</u> <u>13(2).</u> 238-251
317.	H ₃ CO	13Z-	379 ε 38300	366	444		493		462					2240 780				str. 353P, in 50mM MES, 5mM EDTA, pH 6.5, 20ºC, τ _{rec} 13 h	27 Bioorgan .Khim. 1987. 13(2), 238-251
318.	↓ Costato	13Z-	368 ε 34800	357	431		473		466					2060 1270				str. 353P, in 50mM MES, 5mM EDTA, pH 6.5, 20 ⁰ C, τ _{rec} 13 h	27 Bioorgan Khim. 1987, 13(2), 238-251
319.	F C C C C C C C C C C C C C C C C C C C	13Z-	359 ε 25400	354	428		474		451	+				2270 1190				str. 353P, in 50mM MES, 5mM EDTA, pH 6.5, 20 ^o C, τ_{rec} 10 h light adaptation slowed \geq 80 times	Bioorgan <u>.Khim.</u> <u>1987,</u> <u>13(2),</u> <u>238-251</u>

	Structure	Isomer		:	^λ max (nr	n);ε(Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
320.	ci Ci	13Z-	358 ε 31700	353	426		475		442					2370 850				str. 353P, in 50mM MES, 5mM EDTA, pH 6.5, 20 ⁰ C, τ _{rec} 14 h	Bioorgan .Khim. 1987. 13(2). 238-251
321.		13Z-	357 ε 38000	352	423		471		448	+				2410 1320				str. 353P, in 50mM MES, 5mM EDTA, pH 6.5, 20ºC, τ _{rec} 14 h	27 Bioorgan Khim. 1987, 13(2), 238-251
322.		13Z-	357 ε 28700	343	415		468		447					2730 1730				str. 353P, in 50mM MES, 5mM EDTA, pH 6.5, 20ºC, τ _{rec} 15 h	27 Bioorgan .Khim. 1987. 13(2). 238-251
323.		13Z-	347	339	411		442		423					1710 690				str. 353P, in 50mM MES, 5mM EDTA, pH 6.5, 20 ⁰ C, τ _{rec} 11 h	27 Bioorgan .Khim. 1987. 13(2). 238-251
324.		13Z-	274, 368				481		475									str. 353P, in 50mM MES, 5mM EDTA, pH 6.5, 20 ⁰ C, τ _{rec} 24h	<u>29</u>
325.		all-E-	323ª		378 ^{a,k}		406							1820				strain JW5 in water Donor-acceptor substituted retinal analogs with substituents varying in donor and acceptor strength have reconstituted with BO.	J. Phys. Chem. A, 2010, 114(5), 2179– 2188

	Structure	Isomer		2	^ک max (ni	m); ε (Μ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	;		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
																		Quantum-chemical calculations chromophore-protein complexes were investigated.	
326.	но	all-E-	357 ª		433 ^{a,k}		480							1930				strain JW5 in water Donor-acceptor substituted retinal analogs with substituents varying in donor and acceptor strength have reconstituted with BO. Quantum-chemical calculations chromophore-protein complexes were investigated.	<u>J. Phys.</u> <u>Chem.</u> <u>A. 2010,</u> <u>114(5),</u> <u>2179–</u> <u>2188</u>
327.	H ₃ C	all-E-	334 ª		391 ^{a,k}		423							2260				strain JW5 in water Donor-acceptor substituted retinal analogs with substituents varying in donor and acceptor strength have reconstituted with BO. Quantum-chemical calculations chromophore-protein complexes were investigated.	J. Phys. Chem. A. 2010, 114(5), 2179– 2188
328.	H ₃ CO	all-E-	319ª ɛ 30800 324 ^d	303 ^d , 312sh	366ª	329	412			+		NO					340+ /429-	str. R1 in 10mM MES, pH 6.0	Bioorgan Khim. (Rus), 1981, 7(8), 1169- 1194
329.	н₃со	all-E-	320ª ε 26300			325 ε 26000	NO											str. R1 in 10mM MES, pH 6.0	Bioorgan Khim. (Rus), 1981, 7(8), 1169- 1194

	Structure	Isomer		2	^λ max (n	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reactior	is with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
330.	H ₃ CO	all-E-	349ª ε 40400			364	453			+							360+ /460-	str. R1 in 10mM MES, pH 6.0	Bioorgan Khim. (Rus),
			356₫	339 ^d	403 ^d														<u>1981,</u> 7(8), <u>1169-</u> 1194
			351ª		420 ^{a,k}		459							2020				strain JW5 in water Donor-acceptor substituted retinal analogs with substituents varying in donor and acceptor strength have reconstituted with BO. Quantum-chemical calculations chromophore-protein complexes were investigated.	J. Phys. Chem. A. 2010. 114(5). 2179- 2188
331.	H ₃ CO ^{CO2Et}	all-E-	333ª ε 38300			342 ε 28700	NO											str. R1 in 10mM MES, pH 6.0	Bioorgan Khim. (Rus). 1981. 7(8). 1169- 1194
332.	H ₃ CO	all-E-	355ª ε 34200 359 ^d	337 ^d	406 ^d	370	460			+								str. R1 in 10mM MES, pH 6.0	Bioorgan Khim. (Rus), 1981, 7(8), 1169- 1194
333.	H ₃ CO	all-E-	348ª ε 41700			360 ε 33500	NO											str. R1 in 10mM MES, pH 6.0	Bioorgan Khim. (Rus), 1981, 7(8), 1169- 1194

	Structure	Isomer		î	Max (ni	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	is with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA	1			all-E/13Z-		NH ₂ OH	all-E-RET			
334.	нзсо	all-E-	377° ε 49400 383 ^d	358 ^d , 370sh	431 ^d	393	489			+		NO			stable nearly several hours	stable nearly several hours	375+ /485-	str. R1 in 10mM MES, pH 6.0. LD adaptation absent. BRA cycle with low efficiency.	Bioorgan Khim. (Rus), 1981, 7(8), 1169- 1194
335.	H ₃ CO CO ₂ Et	all-E-	382ª ε 55900			370 ε 34000	NO											str. R1 in 10mM MES, pH 6.0	Bioorgan Khim. (Rus), 1981, 7(8), 1169- 1194
336.	н₃со	all-E-	375ª ε 48300			+	NO											str. R1 in 10mM MES, pH 6.0	Bioorgan Khim. (Rus), 1981, 7(8), 1169- 1194
337.	H ₃ CO	all-E-	378ª ε 50400			398 ε 39300	NO											str. R1 in 10mM MES, pH 6.0	<u>Bioorgan</u> <u>Khim.</u> (<u>Rus),</u> 1981, 7(8), 1169- 1194
338.	H ₃ CO	all-E-	378ª ε 50000			+	NO											str. R1 in 10mM MES, pH 6.0	Bioorgan Khim. (Rus), 1981, 7(8), 1169- 1194
339.	H ₃ CO	all-E-	398ª ε 58700 408 ^d	369sh 379⁴, 396sh	462 ^d	380, 408, 434	531			+		+?			stable nearly several hours	stable nearly several hours	510+	str. R1 in 10mM MES, pH 6.0 LD adaptation absent. BRA cycle with low efficiency.	Bioorgan Khim. (Rus), 1981, 7(8), 1169- 1194

	Structure	Isomer		2	^ک max ^{(nı}	m); ε (Μ [.]	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
340.	H ₃ CO	all-E-	382ª ε 55900			+	NO											str. R1 in 10mM MES, pH 6.0	Bioorgan Khim. (Rus). 1981. 7(8). 1169- 1194
341.	H ₃ CO	all-E-	397ª ε 47300			+	NO											str. R1 in 10mM MES, pH 6.0	Bioorgan Khim. (Rus). 1981, 7(8), 1169- 1194
342.	H ₃ CO	all-E-	417 ^a ε 68000 428 ^d	380sh 400 ^d , 421	481 ^d	385, 414, 433	567					NO			stable nearly several hours	stable nearly several hours	555+	str. R1 in 10mM MES, pH 6.0. LD adaptation absent. BRA cycle with low efficiency.	Bioorgan Khim. (Rus). 1981. 7(8). 1169- 1194
343.	(H ₃ C) ₂ N	E-	389ª ɛ 37500 390 ^d	364 ^d	464 ^d	405	508			+		NO			stable nearly several hours	stable nearly several hours	395+ /524-	str. R1 in 10mM MES, pH 6.0. LD adaptation absent. BRA cycle with low efficiency	Bioorgan Khim. (Rus). 1981. 7(8). 1169- 1194
		E-		352	460		510							2130					Retinal Proteins 1987. 205–216
		E-	390ª	352	460		510			+				2130				20mM HEPES pH 7.0. BRA cycle has "K", but "O" and "L", "M" not observed.	Biochem 1985. 24(5), 1260 - 1265
		E-					518 540											in water. pH 7.0 pH 2.5	BiophysJ 1989 56(6)

		Structure	Isomer		2	^λ max (ni	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reactio	ns with		Remarks	Ref.
	No			"CHO"	SB	SBH⁺	NC	F	Pigments	3	İ 👘	М	%	ratio	cm ⁻¹			CD	others	1
								(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
								540											pH 0.5	<u>1259-</u> <u>1265</u>
			E-			460 ^a 460 ^a 460 ^a		508 492 494							2050 1400 1500				CB X=CHO NC X=NH ⁺ CH ₃ NC X=NH ⁺ (CH ₂) ₃ CH ₃ The properties of noncovalently bound PSB pigments (NC) can be prepared in native BO that retains its Lys-216 residue in its binding site. Reconstitution was carried out at pH 7 using 5 mM phosphate buffer. Comparison of data of CB (polyenals) and NC (SB) pigments. pKa (PSB) 7.1 in ethanol/water, 1:1, solution containing 10 mM phosphate buffer. pKa (PSB) X=NH ⁺ CH ₃ CB pigment 12 pKa (PSB) X=NH ⁺ CH ₃ NC pigment 10.8	Biochem 2001 40(44) 13310- 13319
()	344.	(H ₃ C) ₂ N	E-	390ª	347ª	464ª		518			NO				2250				20mM HEPES pH 7.0.	Biochem 1985. 24(5). 1260 - 1265
			E-			460 ^a 460 ^a 460 ^a		520 514 510							2500 2300 2130				CB X=CHO NC X=NH ⁺ CH ₃ NC X=NH ⁺ (CH ₂) ₃ CH ₃ The properties of noncovalently bound PSB pigments (NC) can be prepared in native BO that retains its Lys-216 residue in its binding site.	Biochem 2001 40(44) 13310- 13319

	Structure	Isomer		2	^ک max ⁽ⁿⁱ	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reactio	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	Pigments (P) DA LA				М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA	1			all-E/13Z-		NH₂OH	all-E-RET			
		E-	380ª				520											Reconstitution was carried out at pH 7 using 5 mM phosphate buffer. Comparison of data of CB (polyenals) and NC (SB) pigments. pKa (PSB) 6.6 in ethanol/water, 1:1, solution containing 10 mM phosphate buffer. pKa (PSB) X=NH ⁺ CH ₃ CB pigment 11.5 pKa (PSB) X=NH ⁺ CH ₃ NC pigment 10.6 Protein-β-lonone Ring Interactions. Second harmonic generation (SHG) to probe the light-induced dipolar changes	JPhysCh em B 2003 107(25) 6221- 6225
345	(H ₃ C) ₂ N	E-	384ª ε 33800			390 ε 29500	NO											str. R1 in 10mM MES, pH 6.0	Bioorgan Khim. (Rus). 1981. 7(8). 1169- 1194
346	(H ₃ C) ₂ N	all-E-	418ª	384ª	509ª		582			+				2470				20mM HEPES pH 7.0. BRA cycle" has 2 "L", blue-shifted	Biochem <u>1985.</u> 24(5). <u>1260 -</u> <u>1265</u>
		all-E-					582 630 634											in water. pH 7.0 pH 2.5 pH 0.5	BiophysJ 1989 56(6) 1259- 1265
		all-E-	416ª		533 ^{a,k}		580							1520				strain JW5 in water	J. Phys.

	Structure	Isomer			^λ max (ni	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	;		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-	•	NH₂OH	all-E-RET			
																		Donor-acceptor substituted retinal analogs with substituents varying in donor and acceptor strength have reconstituted with BO. Quantum-chemical calculations chromophore-protein complexes were investigated.	Chem. A. 2010. 114(5), 2179– 2188
347	7. (H ₃ C) ₂ N	all-E-		384	511		576			+				2210					Retinal Proteins 1987 205–216
		all-E-	407ª	384ª	511ª		576			+				2210				20mM HEPES pH 7.0. BRA cycle "K","O" and"L", but "M" not observed	Biochem <u>1985.</u> 24(5). 1260 - 1265
		all-E-					576 620 631											in water. pH 7.0 pH 2.5 pH 0.5	BiophysJ 1989 56(6) 1259- 1265
		all-E-			511		580							2300				pKa (SBH⁺) = 7.0, pKa (BRA SB) = 12.0. Titrations of BRA data	Biochem <u>1995,</u> <u>34(37),</u> <u>12059-</u> <u>12065</u>
																		pKa (BRA Asp85) = 5.2. Titrations of BRA data	Biochem <u>1995</u> <u>34(37)</u> <u>12066-</u> <u>12074</u>
		all-E-			510ª 510ª		578 618							2300 3430				CB X=CHO NC X=NH⁺CH₃	Biochem 2001

	Structure	Isomer			λ _{max} (nr	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	Pigments				М	pump %	ratio	cm ⁻¹		1	CD	others	
							(P)	DA	LA				all-E/13Z-	GIII	NH ₂ OH	all-E-RET			
		all-E-	424ª		510ª		570							2950				NC X=NH ⁺ (CH ₂) ₃ CH ₃ The properties of noncovalently bound PSB pigments (NC) can be prepared in native BO that retains its Lys-216 residue in its binding site. Reconstitution was carried out at pH 7 using 5 mM phosphate buffer. Comparison of data of CB (polyenals) and NC (SB) pigments. pKa (PSB) 6.2 in ethanol/water, 1:1, solution containing 10 mM phosphate buffer. pKa (PSB) X=NH ⁺ CH ₃ CB pigment 12 pKa (PSB) X=NH ⁺ CH ₃ NC pigment 10.9 Protein- <i>b</i> -lonone Ring Interactions. Second harmonic generation (SHG) to probe the light-induced dipolar	40(44) 13310- 13319 13319 JPhysCh em B 2003 107(25) 6221- 6225
348	(H ₃ C) ₂ N	all-E-	408ª ε 35300			420 ε 30500	NO											str. R1 in 10mM MES, pH 6.0	Bioorgan Khim. (Rus), 1981, 7(8), 1169- 1194
349	P. (H ₃ C) ₂ N	all-E-	435ª	396ª	525ª		615			+				2790				20mM HEPES pH 7.0. BRA cycle similar to BR "K" ⁷²⁰ ,"O" ⁵²⁰ and "M" but "L" not observed. in water. pH 7.0	Biochem 1985. 24(5). 1260 - 1265 BiophysJ 1989

	Structure	Isomer			λ _{max} (ni	m); ε (Μ [.]	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
							650 650											рН 2.5 рН 0.5	<u>56(6)</u> <u>1259-</u> <u>1265</u>
350.	(H ₃ C) ₂ N	all-E-		398	524		590			+				2140					Retinal Proteins 1987. 205–216
		all-E-	414ª	398ª	524ª		590			+								20mM HEPES pH 7.0. BRA cycle similar to BR "K","O" and "M" but "L" not observed.	Biochem 1985. 24(5). 1260 - 1265
		all-E-					590 635 635											in water. pH 7.0 pH 2.5 pH 0.5	BiophysJ 1989 56(6) 1259- 1265
		all-E-	428ª				620											Protein- <i>b</i> -lonone Ring Interactions. Second harmonic generation (SHG) to probe the light-induced dipolar changes	JPhysCh em B 2003 107(25) 6221- 6225
351.	(H ₃ C) ₂ N	all-E-	419ª ε 37400			+	NO											str. R1 in 10mM MES, pH 6.0	Bioorgan Khim. (Rus). 1981, 7(8), 1169- 1194
352.		all-E-	305ª ε 24300			+	NO											str. R1 in 10mM MES, pH 6.0	<u>Bioorgan</u> <u>Khim.</u> (Rus), 1981, 7(8),

	Structure	Isomer		2	λ _{max} (n	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigment	S		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
																			<u>1169-</u> 1194
353.		all-E-			406			438	438				74/26 74/26	1800 1800				pH 7.0, 50 mM Hepes	Photoche mPhotob iol 1991
254	Ň Â Â		226				NO											otr D1	<u>969-976</u>
554.		a⊪-⊏-	ε 27500			+	NO											Su. RI	<u>Khim.</u> (Rus), 1984, v.
																			<u>10, N 2,</u> 256-259
	K. La	abelled B	R derivat	ives (rac	lioactiv	e, photo	-affinic	, fluorop	bhoric, h	neavy-at	om, par	amagne	etic (SL), ion	ophoric a	and photoch	romic prol	bes)		
355.		all-E-					540											BRA in dark in 67 mM phosphate buffer at pH 7.0 immediately hydrolysed in 4- hydroxyBR	Photoche mPhotob iol 1981 33(4) 483-488
356.	N ₂ HCOCO	all-E-					525	525	+						unstable in dark			In water pH7.0, τ _{rec} 1.5 h. UV-induced cross-links. Reversible L-D adaptation	Photoche mPhotob iol 1981 33(4) 483-488
		all-E- 1-(¹⁴ C) 13Z-	245 ε 18000 360° ε 49000				500	440sh 525	532	+		50	75\25		unstable under irradiation similar to natural BR	stable	LA- 505+ /590-	10 mM Hepes buffer, pH7.0. Reversible L-D adaptation. UV- induced cross-links 25%. BR532 stable to irradiation with light >530 nm	JACS 1983. 105(15), 5160 - 5162.
357.	N ₂ HCOCO	all-E- 3S(3β) 1-(¹⁴ C)						525	538	+	402	100						in distilled $H_20 \tau_{rec} 5 h$ "K" 610 nm. H+-transport in 4M NaCl, JW2N cells. UV irradiation at 254 nm generated highly reactive carbenes,	Tetrahed ron Lett. 1988. 29(19), 2275 – 2278
	Structure	Isomer			λ _{max} (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	ocycle	H⁺- pump	Isomer	OS BR	Reaction	is with		Remarks	Ref.
------	-----------------------------------	---	--	----	----------------------	-----------------------	----------------------------------	---------	-----	-------	--------	-------------	------------	------------------	------------------------------	---------------------	----	---	---
No			"CHO"	SB	SBH⁺	NC	ſ	Pigment	S		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET		which cross-linked the radiolabeled retinals to amino acid residues in the vicinity of the β -ionone ring. UV-induced cross-links with Thr121/Gly122.	Biochem 1990 29(20), 4898 - 4904
358.	N ₂ HCOCO ^W	all-E- 3R(3α)- 1-(¹⁴ C)						535	545	+	410	100						in distilled $H_20 \tau_{rec} 5 h$ "K" 590 nm. H+-transport in 4M NaCl, JW2N cells. UV irradiation at 254 nm generated highly reactive carbenes, which cross-linked the radiolabeled retinals to amino acid residues in the vicinity of the β -ionone ring. UV-induced cross- links.	Tetrahed ron Lett. 1988. 29(19), 2275 – 2278 Biochem 1990 29(20), 4898 - 4904
359.		all-E-					475												Tetrahed ron 1984. 40(3). 493- 500
360.		all-E-	$272 \\ \varepsilon \\ 1300, \\ 375 \\ \varepsilon \\ 39500$			+	475											str. R1, pH7.0. Label stable to UV- induced cross-links formation.	Bioorgan <u>Khim</u> (Rus), 1981, 7(11), 1731- 1733
361.		all-E-	390ª				517		507	+	410	40			slowly destroyed in 2h	slowly displaced		In distilled water. Slowed "M"-decay kinetics. Interaction of tritiated RetA as a potential photoactivatable cross-linking agent to BR showed no labeling of the protein	Photoche m.Photo biol. 1994, 60(1), 64-68

	Structure	lsomer)	^ک max ^{(nr}	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	P	igments	3		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
																		with a detection limit estimated at 5%.	
362.		all-E-					452					12						pH 7.0, 25ºC in dark	JACS 1989, 111(13), 4997-
363.		all-E-					475					+++		1430				τ_{rec} 2 h, 35% yield. BRA labeling resulted in cross-linking to many amino acids.	4998. Biophys Chem 1995 56(1-2) 13-22
																			<u>JACS</u> <u>1994</u> <u>116(15)</u> <u>6823-</u> <u>6831</u>
364.	Xalala .	all-E-					503					+++		2340			290- /496 +	τ_{rec} 186 h, 50% yield. UV-induced cross- links 7% Asn176/ Arg175	Biophys Chem 1995 56(1-2) 13-22
																			JACS 1994 116(15) 6823- 6831
365.		all-E-	385 ε 50500				497					20						UV-induced cross- links 15% Ala126/ Leu127 and Trp137/138 1 min irradiation at	<u>JACS.</u> <u>1990</u> <u>112(21),</u> <u>7779 –</u> 7782
		15- ³ H																475 nm led to reduction in BR497 and rapid decrease in H-pump ability	
366.		all-E- 15- ³ H	390ª ε 45700				470 ε 35300											str. R1S9 pH 6.5, 22°C. τ_{rec} 6 h UV-induced cross- links 30% Ser193/ Glu194.	JBiolChe m., 1982, 257(22), 13616- 13623

	Structure	ISOITIEI		X	max (nr	n);ε(M⁻	' cm ⁻ ')			Photo	cycle	H⁺- pump	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
þ			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	
~		- 11 5	0046				(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			.
/.		a⊪-⊑	304° ε				450											buffer solution pH 7.2.	<u>J. Label.</u> Compou
		15 311	64000															UV-induced cross-	nds Dedicula
	N N	191																IITIKS 50%	arm.,
																			$\frac{1987}{24(7)}$
																			<u>787-795</u>
																			Photoche
																			mPhotob
																			<u>41(3)</u>
8	<u> </u>	all-F-					448				345/					slowly			<u>303-307</u> Biophys
0.							110	453	450		360					replaced			J. 1993.
									450	+									<u>64(2-P2)</u> A211
0	1 1						470	470								atabla		otr 571001 25 mM	Distant
9.		a⊪-⊑-					478	478			+	+				stable		phosphate buffer, pH	mPhotoche
	⊷↓↓																	7.0. X-ray diffraction	<u>iol 1991</u>
	н _g сı																	comparable to BR, but	<u>873-879</u>
																		rate constants are	Biophys
																			J. 1989.
																			<u>55(2),</u> 255a.
0.	Co ₂ (CO) ₆	13Z-	320			NO	NO											str. 353P, R1 and	Shevyak
			ε 22300,															pH 6.0	<u>ov S.v.</u> Ph.D.
	$X \land / / $		578sh															No pigment formation	thesis,
			ε 2800															incubation	2000
	\sim																		Biochem M 2001
																			<u>66(11)</u>
																			<u>1323-</u> <u>1333</u>
1.		all-E-	390				450											str. 353P, R1 and	<u>Shevyak</u>
			ε 44900				SUUSN											pH 6.0	<u>ov S.v.</u> <u>Ph.D.</u>
	\sim																	τ _{rec} ~2 h	thesis,
	7. 7. 8. 9. 0. 1.	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ } \\ \end{array} \\ \end{array} \\ } \\ \end{array} \\ } \\ \end{array} \\ } \\ \end{array} \\ \end{array} \\ }	$\begin{array}{c c} & & & & \\ \hline	$\frac{1}{1} \frac{1}{1} \frac{1}$	$\begin{array}{c cccc} & & & & & & & & & & & & & & & & & $	$\begin{array}{c cccc} & & & & & & & & & & & & & & & & & $	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	$\frac{1}{12} + \frac{1}{12} $	$\frac{1}{1} = \frac{1}{12} +	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{1}{CHO^{\circ}} \xrightarrow{\text{SB}} \xrightarrow{\text{SB}+1} \xrightarrow{\text{NC}} \xrightarrow{\text{Pigments}} \xrightarrow{\text{M}} $	$\frac{1}{CHO^{*}} = \frac{1}{SB} = \frac{1}{SBH^{*}} = \frac{1}{NC} = \frac{1}{Pigments} = \frac{1}{M} = \frac{1}{N}$ $\frac{1}{Pigments} = \frac{1}{Pigments} = \frac{1}{M}$ $\frac{1}{N} = \frac{1}{N}$ $\frac{1}{N} =$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{1}{CHO^{2}} = \frac{1}{CHO^{2}} = \frac{1}{SB} = \frac{1}{SH^{2}} + \frac{1}{NC} = \frac{1}{P} = \frac{1}{DA} = \frac{1}{LA} = \frac{1}{M} = \frac{1}{98} = \frac{1}{all E/13Z} = \frac{1}{m^{2}} + \frac{1}{M} = \frac{1}{M} = \frac{1}{2} + $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{10000000000000000000000000000000000$

	Structure	Isomer		Ĵ	λ _{max} (n	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	is with		Remarks	Ref.
Nc	2		"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	
		-		╀───	_	┡───	(P)	DA	LA	_	──		all-E/13Z-		NH₂OH	all-E-RET		Linstable and self	-
																		destroyed in 2 days	Biochem M 2001 66(11) 1323- 1333
372	2. Fe	all-E-	280 ε 8700 337 ε 26700	327 479sh	392 578		426 517							2040				str. 353P, R1 and ET1001 pH 6.0 τ_{rec} ~25 days	<u>Shevyak</u> ov S.V. Ph.D. thesis, 2000
			503 ε 3100																Biochem M 2001 66(11) 1323- 1333
373	^{3.}	all-E-	296 ε 12900 394 ε 38700	373 484sh	454 568sh		485 590sh 483 593sh			NO				1410 1320				str. 353P, R1 and ET1001 pH 6.0 τ_{rec} ~5 days Stable 2 months	<u>Shevyak</u> ov S.V. Ph.D. thesis, 2000
			508 ε 6400																Biochem M 2001 66(11) 1323- 1333
374		all-E-	380ª				480								0.1M, 4h complete hydroxyla- minolysis of BRA480 without BRA480->	stable		in 50 mM sodium acetate buffer pH 5.5. Easy hydrolyzed in 4- hydroxyBRA535 after 0.5 h. ESR spectrum	Photoche mPhotob iol 1981, 33(4), 489-494
	$\int \sum_{N_{n}} \sum_{i=1}^{n}$														BRA535				

	Structure	Isomer			λ _{max} (ni	m); ε (Μ [.]	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- numn	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	I	Pigment	S		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA	1			all-E/13Z-		NH₂OH	all-E-RET			
375.		all-E-	250 ε 4100, 370			+	465											str. R1, in 50 mM phosphate buffer at pH 7.0, slowly hydrolyzed in 4- budgerg //PD	Bioorgan Khim (Rus), 1981, 7(11)
	°T × · · · ·		41500															ESR spectrum	<u>1731-</u> 1733
376.		all-E-	384ª 366°	365				459	459			NO		1000		replaced in 48h		str. R1S9 in water. BRA not show light- dark adaptation. τ_{rec} ~several min	<u>Recl.</u> <u>1995.</u> <u>114(9-</u> <u>10), 403</u> <u>- 409</u>
377.		all-E-	374					454	459		NO	0			stable 60 min 0.1M	stable		ESR spectrum. BRA show light-dark adaptation.	<u>JACS</u> <u>1981.</u> 103(24),
		13Z-	375					454	459										<u>7364 -</u> <u>7366.</u>
		all-E-	384ª 366°	365			459	459	459			NO		1000		replaced in 48h		str. R1S9 in water. BRA not show light- dark adaptation. τ_{rec} ~several min. ESR spectrum.	<u>Recl.</u> <u>1995.</u> <u>114(9-</u> <u>10), 403</u> - <u>409</u>
		all-E-					460											τ_{rec} ~several h. Binding of Mn ²⁺ to deionized wild-type and mutants E74C, A103C, and M163C	Biophys. J. 2001, 81(2), 1155- 1162.
378.	o-N	all-E-	360ª					440	450	+	365	++							18
379.		all-E-	270 ε 10800 377 ^a ε															Synthetic route	Monatsh Chem. 2014 145

	Structure	Isomer			λ _{max} (n	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigment	s		М	w %	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
			33600																<u>651–</u> <u>656.</u>
380.	X X X X X X X X X X X X X X X X X X X	13Z-	258 ε 8300 384ª ε 21300															Synthetic route	<u>Monatsh</u> <u>Chem.</u> 2014 <u>145</u> 651– 656.
381.	(H ₃ C) ₂ N	E-	372ª 351° 380 ⁹			352												In 10 mM Hepes buffer pH 6.5. Emission spectra for: CHO: 401°, 445 ^f , 510 ^a . NC: 440nm -> 425nm BRA: 532 nm	<u>JACS</u> <u>1987</u> <u>109(5),</u> <u>1594 -</u> <u>1596.</u>
382.	CC	all-E-	380- 390 ⁹		460ª		460	460	460							stable, replaced within ~12h		flash-photolysis BRA460~>"K"1.5µs-> "L"500µs>"M"100ms- >P460	Biochem 1991. 30(23), 5400 - 5409
383.	justes.	all-E-	376ª 380- 390 ^g		460ª		460	460	460							stable, replaced within ~12h			Biochem 1991. 30(23), 5400 - 5409
384.		all-E-	227, 249, 331, 368, 386			345, 365, 440	NO												29 JAppl Spectros copy (Rus)
		13Z-	227, 251, 310, 329, 368, 386			345, 365, 440	NO												<u>1990.</u> <u>52(1).</u> 24 - 30
385.		all-E-	253 ε 20530 0 387 ε	254 386	254 456		552							3810	stable in 8 h	stable		in 10 mM Hepes buffer at 25 ⁰ C. Steady state fluorescence measurements.	CanJ Chem 1990 68(3) 383-390

	Structure	Isomer			λ _{max} (n	m); ε (Μ΄	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	າs with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigment	s		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
			11250																JPhotoch emPhoto biol B 1991 8(3)
386.		all-E-	261 ε 80600 410 ε 24800	395 260 393	429 261 418		545		550	+	400			4820 5130	stable in 24 h	stable		in 10 mM Hepes buffer at 25 ⁰ C. Steady state fluorescence measurements.	223-333 CanJ Chem 1990 68(3) 383-390 JPhotoch emPhoto biol B 1991 8(3) 325-335
387.		all-E-		384	466		498			+	400	++		1380	stable in 4 h	stable in 6 h		str. S9, in 50 mM phosphate buffer at pH 7.2. BRA do not show dark adaptation. BRA cycle "M".	Photoche m.Photo biol. 1999, 70(6), 949-956
388.		all-E-		422 422 422	500 500 500		514 512 516			+	430	++		550 470 620	stable in 4 h	stable in 6 h		WT E194Q E204Q str. S9, in 50 mM phosphate buffer at pH 7.2, E194Q and E204Q mutants BRA do not show dark adaptation. BRA cycle "M" "O". "M" decay in 10 times slower. "O" decay τ = 200 ms.	Photoche m.Photo biol. 1999, 70(6), 949-956
389.		all-E-	407	394	460		475			+								str. 353P, str. ET1001, 5mM MES, pH 6.0	Tetrahed ron 1996, 52(28), 9581- 9588

	Structure	Isomer		1	λ _{max} (ni	m); ε (Μ [.]	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- amua	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	5		М	%	ratio	cm ⁻¹			CD	others	1
		all-E-					(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET		electronic and structural properties of retinal analog were studied using semiempirical, ab initio Hartree-Fock, and DFT methods	J. Chem. Phys., 2006, V. 125, 144901
390.		all-E-	391	388	464		478							630				str. S 9	Tetrahed ron Lett. 1999, 40(13), 2645- 2648
		all-E-																electronic and structural properties of retinal analog were studied using semiempirical, ab initio Hartree-Fock, and DFT methods	J. Chem. Phys., 2006, V. 125, 144901
391.	° CONTRACTOR	all-E-	401 420sh	395	460		497 438 413							1620				str. S 9	Tetrahed ron Lett. 1999, 40(13), 2645- 2648
392.		E-	330 ε 48700	325	373		NO											in HEPES buffer fluorescence emission spectra $\lambda_{f max}$ 435, 459(sh)	Photoche mPhotob iol 2003, 78(5), 503-510.
393.		all-E-	364 ε 50200	362	421		440							1025		stable τ _{repl} 340 min		in HEPES buffer τ_{rec} ~20 min fluorescence emission spectra $\lambda_{f max}$ 550, 421(sh) nm No fluorescence emission in pigment	Photoche mPhotob iol 2003, 78(5), 503-510.

ſ		Structure	Isomer			^λ max (n	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- gump	Isomer	OS BR	Reaction	is with		Remarks	Ref.
	No			"CHO"	SB	SBH⁺	NC	F	Pigments	S		М	%	ratio	cm ⁻¹			CD	others	
	394.		all-E-	355 ε 49100	347	405		(P) NO	DA					all-E/13Z-		NH₂OH	all-E-RET		in HEPES buffer fluorescence emission spectra $\lambda_{f max} 500 \text{ nm}$	Photoche mPhotob iol 2003, 78(5), 503-510.
	395.		all-E-	383 ε 38500	379	409		452							660		stable τ _{repl} 300 min		in HEPES buffer τ_{rec} ~20 min fluorescence emission spectra $\lambda_{f max} 603$ nm No fluorescence emission in pigment	Photoche mPhotob iol 2003, 78(5), 503-510.
	396.		E-	229 ε 14500, 284 ε 18200, 449 ε 22500	436	465		458					+		-330		stable 1h % _{repl} after 24h – 26%		str. R1M1 10 mM TrisHCl buffer pH 5, τ _{1/2rec} ~7min Fluorescence behavior	JACS <u>1996</u> <u>118(26)-</u> <u>6185-</u> <u>6191</u>
	397.		E-	253 ε 5382 313 ε 10928, 461 ε 18836	446	504		597					+		3090		stable 1h % _{repl} after 24h -15%		str. R1M1 10 mM TrisHCl buffer pH 5, τ _{1/2rec} ~11min Fluorescence behavior	JACS 1996 118(26)- 6185- 6191
	398.		E-	251 ε 7422, 310 ε 8698, 450 ε 17460	434	484		485					NO		40		stable 1h [%] repl after 24h -80%		str. R1M1 10 mM TrisHCl buffer pH 5, τ _{1/2rec} ~1min Fluorescence behavior	J <u>ACS</u> 1996 <u>118(26)-</u> 6185- 6191

	Structure	Isomer		2	^λ max ^{(nr}	n);ε(Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	
399.	CN CN CN	all-E-	340 ^h £ 32400				(P) NO	DA	LA				all-E/13Z-		NH₂OH	all-E-RET		str. ET1001, 5mM MES, pH 6.0	Lukin A.Yu. Ph.D. thesis. 2004
400.		all-E-	356 ^h ε 32600				450- 460											str. ET1001, 5mM MES, pH 6.0 τ _{rec} ~20 min	Lukin A.Yu. Ph.D. thesis, 2004
401.	CO CN CN	all-E-	383 ^h ε 45000				NO											str. ET1001, 5mM MES, pH 6.0	Lukin A.Yu. Ph.D. thesis, 2004
402.	Contraction of the second seco	all-E-	400 ^h ε 52000					495				23						str. ET1001, 5mM MES, pH 6.0 τ _{rec} ~2 h	<u>Mol.</u> <u>Cryst.</u> <u>Cryst</u> <u>2005.</u> 431, 209-214
																			Vestnik MITHT, 2011, 6(2), 15- 36
																			<u>A.Yu.</u> <u>Ph.D.</u> <u>thesis.</u> 2004
403.		all-E-	342 ^h ε 34000				NO											str. ET1001, 5mM MES, pH 6.0	<u>Lukin</u> <u>A.Yu.</u> <u>Ph.D.</u> thesis, 2004

	Structure	Isomer		2	^λ max (nr	m); ε (Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	s		М	%	ratio	cm ⁻¹			CD	others	
404.		all-E-	359 ^h ε 28000				(P) 450- 460	DA					all-E/132-		NH ₂ OH	all-E-RET		str. ET1001, 5mM MES, pH 6.0 τ _{rec} ~20 min	Lukin A.Yu. Ph.D. thesis, 2004
405.	CN CN CN	all-E-	387 ^h ε 44000				NO											str. ET1001, 5mM MES, pH 6.0	Lukin A.Yu. Ph.D. thesis, 2004
406.		all-E-	400 ^h ε 50000					495				22						str. ET1001, 5mM MES, pH 6.0 τ _{rec} ~2 h	<u>Mol.</u> <u>Cryst.</u> <u>Cryst</u> <u>2005,</u> 4 <u>31,</u> 209-214
																			<u>Vestnik</u> <u>MITHT,</u> 2011, 6(2), 15- 36 <u>Lukin</u> A Yu
																			<u>Ph.D.</u> thesis, 2004
407.		all-E-	341 ⁿ ε 32000				NO											str. ET1001, 5mM MES, pH 6.0	Lukin A.Yu. Ph.D. thesis, 2004
408.		all-E-	354 ^h ε 27000				450- 460											str. ET1001, 5m \overline{M} MES, pH 6.0 τ_{rec} ~20 min	Lukin A.Yu. Ph.D. thesis, 2004

	Structure	Isomer		2	^λ max (nr	m);ε(M⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	1
409.	CN CN CN CN CN	all-E-	379 ^h ε 44500				(P) NO	DA					all-E/13Z-		NH₂OH	all-E-RET		str. ET1001, 5mM MES, pH 6.0	Lukin A.Yu. Ph.D. thesis, 2004
410.		all-E-	396 ^h ε 51000					497										str. ET1001, 5mM MES, pH 6.0 τ _{rec} ~2 h	Mol. Cryst. Liq. Cryst 2005, 431, 209-214 Vestnik
																			MITHT, 2011, 6(2), 15- 36 Lukin A.Yu. Ph.D. thesis, 2004
411.		all-E-	339 ^h ε 23000				NO											str. ET1001, 5mM MES, pH 6.0	Lukin A.Yu. Ph.D. thesis. 2004
412.		all-E-	359 ^h ε 29000				450- 460											str. ET1001, 5mM MES, pH 6.0 τ _{rec} ~20 min	Lukin A.Yu. Ph.D. thesis, 2004
413.		all-E-	379 ^h ε 42000				NO											str. ET1001 pH 6.0	Lukin A.Yu. Ph.D. thesis. 2004
414.		all-E-	396 ^h ε 55000					497										str. ET1001, 5mΜ MES, pH 6.0 τ _{rec} ~2 h	<u>Mol.</u> Cryst. Liq. Cryst

		Structure	Isomer		2	^λ max (nr	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
N	0			"CHO"	SB	SBH⁺	NC	F	Pigments	5		М	%	ratio	cm ⁻¹			CD	others	
								(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			$\frac{2005}{431}$
																				<u>Vestnik</u> <u>MITHT,</u> 2011, 6(2), 15- <u>36</u>
																				<u>Lukin</u> A.Yu. Ph.D. thesis, 2004
41	5.		all-E-	358 ε 34000				450- 460											str. ET1001, 5mM MES, pH 6.0 τ _{rec} ~20 min	<u>Lukin</u> <u>A.Yu.</u> <u>Ph.D.</u> <u>thesis,</u> 2004
41	6.	¦ ¡	all-E-	400 ε 40000 402 ^h				500			+		35						str. ET1001, 5mM MES, pH 6.0 τ _{rec} ~1 h	<u>Mol.</u> <u>Cryst.</u> <u>Liq.</u> <u>2005,</u> 431, 209-214
																				<u>Vestnik</u> <u>MITHT,</u> <u>2011,</u> <u>6(2), 15-</u> <u>36</u> Lukin
41	7			364	356	436		460					354		1200				str ET1001	A.Yu. Ph.D. thesis, 2004
41	/.		all-C-	ε 35000	500	430		400			Ť		3.3-4		1200				pH 6.0	<u>Cryst.</u> Liq. Cryst. 2000. 345 15–

		Structure	Isomer			λ _{max} (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	is with		Remarks	Ref.
r	No			"CHO"	SB	SBH⁺	NC	F	Pigments	s	┨────┐	М	%	ratio	cm ⁻¹			CD	others	1
								(P)	DA	LA	-			all-E/13Z-	0	NH ₂ OH	all-E-RET			
																				<u>20.</u>
																				Biochem M 2001 66(11) 1323- 1333
																				<u>Mol.</u> <u>Cryst.</u> <u>Liq.</u> <u>Cryst</u> <u>2005,</u> 4 <u>31,</u> 209-214
																				<u>Vestnik</u> <u>MITHT,</u> 2011, 6(2), 15- <u>36</u>
																				Lukin A.Yu. Ph.D. thesis, 2004
4	18.		E-	320 ε 25100			-	NO											str. ET1001 pH 6.5	Rus J. Bioorgan Chem., 2008, V. 34, № 2, 252–260
																				Laptev A.V Ph.D. thesis, 2008
4	.19.		E-	340 ε 26300			-	NO											str. ET1001 pH 6.5	Rus J. Bioorgan Chem., 2008, V. 34, № 2, 252–260

	Structure	Isomer		2	^h max (nr	n);ε(M⁻	¹ cm ⁻¹)			Photo	cycle	H⁺- numn	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
lo			"CHO"	SB	SBH⁺	NC	Pigments (P) DA LA				М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
																			DyesPig ments 2012 92 831-837
																			<u>Vestnik</u> <u>MITHT,</u> 2011, 6(2), 15- <u>36</u>
																			<u>JPhotoch</u> <u>emPhoto</u> <u>biol_A</u> 2012 231(1) 41-44
																			Laptev A.V Ph.D. thesis, 2008
20.		all-E-	340 ε 35480	-	-	-	NO											str. ET1001 pH 6.5	Rus J. Bioorgan Chem., 2008, V. 34, № 2. 252–260
																			Laptev A.V Ph.D. thesis. 2008
21.		all-E-	365 ε 37160	338	384	-	440							3310				str. ΕΤ1001 pH 6.5 τ _{rec} ~3 days	Rus J. Bioorgan Chem., 2008, V. 34, № 2, 252–260 DycsPig
	o 20.	$\begin{array}{c} 0 \\ 0 \\ \end{array}$	$0 \qquad \qquad 0 0 0 0 0 0 0 0 $	$\begin{array}{c c} & & & & & & \\ \hline & & & & \\ \hline \\ \hline \\ \hline \\ \hline$	o $\frac{1}{ CHO^{\circ} }$ SB $\frac{1}{ CHO^{\circ} }$ S	$0 \qquad	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$0 \qquad	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$0 \qquad $	0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

		Structure	Isomer		1	λ _{max} (nr	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	is with		Remarks	Ref.
	No			"CHO"	SB	SBH⁺	NC	F	Pigments	;		М	pump %	ratio	cm ⁻¹			CD	others	
								(P)	DA	LA				all-E/13Z-	•	NH₂OH	all-E-RET			
																				<u>2012 92</u>
																				831-837
																				Vestnik
																				$\frac{M11H1}{2011}$
																				<u>6(2), 15-</u>
																				<u> 30</u>
																				JPhotoch
																				biol_A
																				$\frac{2012}{221(1)}$
																				$\frac{231(1)}{41-44}$
																				Lantev
																				A.V.
																				<u>Ph.D.</u> thesis
																				2008
4	422.		all-E-	390 £	-	-	400	NO											str. ET1001 pH 6.5	<u>Rus J.</u> Bioorgan
				44670															p	Chem.,
																				2008, V. 34, № 2,
		\CN																		252-260
																				Laptev
																				A.V
																				<u>Ph.D.</u> thesis.
L					0.01	470		10-							0.50					2008
4	423.		all-E-	411 ε	391	470	455	495							850				str. ET1001 pH 6.5	<u>Rus J.</u> Bioorgan
				51290															τ _{rec} ~3 days	Chem.,
																				<u>2008, V.</u> 34, № 2,
		· · · · · · · · · · · · · · · · · · ·																		<u>252–260</u>
		\`o																		DyesPig
																				ments
																				<u>2012 92</u> 831-837
						1														

ſ		Structure	Isomer		2	λ _{max} (ni	m); ε (Μ ⁻	⁻¹ cm ⁻¹)		Photo	cycle	H⁺- pump	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
	No			"CHO"	SB	SBH⁺	NC	(D)	Pigments		М	%	ratio	cm ⁻¹			CD	others	
								(P)					aii-E/132-						Vestnik <u>MITHT,</u> 2011, 6(2), 15- 36
																			JPhotoch emPhoto biol_A 2011 222(1) 16-24
																			Laptev A.V Ph.D. thesis, 2008
	424.		all-E-	367 ε 45700	-	-		NO										str. ET1001 pH 6.5	<u>Vestnik</u> <u>MITHT,</u> 2011, 6(2), 15- 36
																			JPhotoch emPhoto biol_A 2011 222(1) 16-24
																			HighEne rgyChem 2008 42(7) 601-603
																			Laptev <u>A.V</u> Ph.D. thesis, 2008

ſ		Structure	Isomer			^λ max (nr	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- numn	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
	No			"CHO"	SB	SBH⁺	NC	F	Pigments	;		М	%	ratio	cm ⁻¹			CD	others	
								(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
	425.		all-E-	385 ε 47860	345		-	605											str. ET1001 pH 6.5 τ _{rec} ~4 days	DyesPig ments 2012 92 831-837
																				<u>Vestnik</u> <u>MITHT,</u> 2011, 6(2), 15- <u>36</u>
																				JPhotoch emPhoto biol A 2011 222(1) 16-24
																				HighEne rgyChem 2008 42(7) 601-603
																				Laptev A.V Ph.D. thesis, 2008
	426.		all-E-	405 ε 48980	-	-		NO											str. ET1001, pH 6.5	<u>Vestnik</u> <u>MITHT,</u> <u>2011,</u> <u>6(2), 15-</u> <u>36</u>
																				JPhotoch emPhoto biol A 2011 222(1) 16-24
																				HighEne rgyChem 2008

		Structure	Isomer			^λ max (nr	n);ε(Μ	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
Ν	١o			"CHO"	SB	SBH⁺	NC	F	Pigments	3		М	%	ratio	cm ⁻¹			CD	others	1
							ļ	(P)	DA	LA		-		all-E/13Z-		NH ₂ OH	all-E-RET	ļ		40(7)
																				<u>42(7)</u> 601-603
																				Laptev A.V Ph.D. thesis, 2008
4	27.		all-E-	266 324 410 ^ª ε 50120			480	500											str. ET1001, pH 6.5 τ _{rec} ~7 days	DyesPig ments 2012 92 831-837
																				<u>Vestnik</u> <u>MITHT,</u> <u>2011,</u> 6(2), 15- <u>36</u>
																				JPhotoch emPhoto biol A 2011 222(1) 16-24
																				HighEne rgyChem 2008 42(7) 601-603
																				Laptev A.V Ph.D. thesis, 2008
4	28.		all-E-	278 338ª				NO											str. ET1001, 5mM MES, 100mM NaCl pH 6.0	Belikov <u>N.E.,</u> Ph.D. thesis, 2011
																				JPhotoch emPhoto

	Structure	Isomer			λ _{max} (nr	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reactior	ns with		Remarks	Ref.
No	5		"CHO"	SB	SBH⁺	NC	F	ligments	3		М	%	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
																			biol_A 2008 196(2-3) 262-267
42		all-E-	355 355ª	345	413		430							960				str. ET1001, 5mM MES, 100mM NaCl pH 6.0 τ _{rec} ~7 days	Belikov N.E., Ph.D. thesis, 2011
																			JPhotoch emPhoto biol A 2008 196(2-3) 262-267
																			DyesPig ments 2012 92 831-837
																			<u>Vestnik</u> <u>MITHT,</u> 2011, 6(2), 15- <u>36</u>
43	0. F F F F F F F F F F F F F	all-E-					NO											str. ET1001, 5mM MES, 100mM NaCl pH 6.0	DyesPig ments 2012 92 831-837
																			Belikov N.E., Ph.D. thesis, 2011
43	1.	all-E-	390, 402	368	460		510							2130				str. ET1001, 5mM MES, 100mM NaCl pH 6.0 τ _{rec} ~4 days	<u>JPhotoch</u> <u>emPhoto</u> <u>biol_A</u> <u>2008</u> <u>196(2-3)</u> <u>262-267</u>

	Structure	Isomer			λ_{max} (nr	m); ε (Μ ⁻	¹ cm ⁻¹)			Photo	cycle	H⁺-	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	Pigments (P) DA LA				М	www.pump	ratio	cm ⁻¹			CD	others	1
							(P)	DA	LA				all-E/13Z-		NH₂OH	all-E-RET			
																			Belikov N.E., Ph.D. thesis, 2011
																			DyesPig ments 2012 92 831-837
																			<u>Vestnik</u> <u>MITHT,</u> 2011, 6(2), 15- <u>36</u>
432.	F F F F F S S S S S S S S S S S S S S S	all-E-	392, 409, 579				NO											str. ET1001, 5mM MES, 100mM NaCl pH 6.0 Incubation of closed cyclized form during ~48 days no BRA formation!!!	Belikov N.E., Ph.D. thesis, 2011 DyesPig ments 2012 92 831-837
																			<u>Vestnik</u> <u>MITHT,</u> 2011, 6(2), 15- 36
433.	Ks Ks Ks Korn	all-E-	313 365ª				NO											str. ET1001, 5mM MES, 100mM NaCl pH 6.0	Belikov N.E., Ph.D. thesis, 2011
434.	L _s L L _s L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	all-E-	330sh 390	365	444		450							300				str. ET1001, 5mM MES, 100mM NaCl pH 6.0 τ_{rec} ~7 days Ret and BRA analogs destroyed under illumination.	Belikov N.E., Ph.D. thesis, 2011

	Structure	Isomer			λ _{max} (ni	m); ε (Μ ⁻	⁻¹ cm ⁻¹)			Photo	cycle	H⁺- pump	Isomer	OS BR	Reaction	ns with		Remarks	Ref.
No			"CHO"	SB	SBH⁺	NC	F	Pigments	6		М	%	ratio	cm ⁻¹			CD	others	
							(P)	DA	LA				all-E/13Z-		NH ₂ OH	all-E-RET			
435.	La L	all-E-					NO											str. ET1001, 5mM MES, 100mM NaCl pH 6.0	Belikov N.E., Ph.D. thesis, 2011
436.	L _s L L _s Lagrando	all-E-	397sh 420	400	500		535							1310				str. ET1001, 5mM MES, 100mM NaCl pH 6.0 τ _{rec} ~7 days Ret and BRA analogs destroyed under illumination.	Belikov N.E., Ph.D. thesis, 2011

Properties of artificial bacteriorhodopsin analogs

Notes:

^{1*} Abbreviations: BRh - bacteriorhodopsin; BRA - bacteriorhodopsin analog; BO - bacterioopsin; AM –apomembranes; PM – purple membranes; OS - opsin shift; SB - the Schiff base; SBH⁺ - protonated form of the Schiff base; P - pigment (covalent complex, containing protonated aldimine bond); NC - noncovalent complex; pK_a - pK of aldimine group of retinal or its analog in SBH⁺ and in BRA. Usually, synthesis of retinal analogs and study of their properties are carried out at pH close to neutral (pH 6-7); if pH and temperature at which the reaction of BO with polyenal and other measurements were performed are given in the publication, these values are presented in "Remarks" column. In the same column, data on transitional spectral forms from their photocycles and their transitions in alkaline medium as well as some other non-standart properties of pigments (times of pigments formation, if ones differ substantially from natural BRh parametres, CD-; X-rays or ESR-data, etc.) are presented.

(+) - quality without quantitative assessment; (-) or (NO) - lack of quality; (blank) - no data; sh - shoulder.

²* Polyenals' structures are only given for *all-E*-isomers as their 6-*s*-*cis*-forms, except analogs (1b).

 $^{3*} \lambda_{max}$ values for compounds (CHO, SB, SBH⁺) are given for solutions in methanol (no index), ethanol (a), isopropanol (b), hexane (c), micells with octadecylamine (d), aldimine prepared with monoethanolamine (the others, with n-butylamine) (e), cyclohexane (f),- acetonitrile (h), - water (g), aldimine prepared with piperidine (k).

⁴* States of pigments, considered in the table: L - light-adapted; D - dark-adapted; (P) - pigment of which is not known to what form (dark or light) the λ_{max} value relates or the preparation was obtained in the dark, but this is definitely a non-equilibrium form to which reversion occurs in the dark after illumination or upon long-term storage of the sample.

⁵* (OS) = $1/\lambda$ (SBH⁺) - $1/\lambda$ (pigment) [<u>33,34</u>]

References

- 1. Oesterhelt D., Stoeckenius W. Rhodopsin-like protein from purple membrane of Halobacterium halobium. // Nature (New Biologist), 1971, V. 233, P. 149 151.
- 2. Stoeckenius W., Lozier R., Bogomolni R.A. Bacteriorhodopsin and purple membrane of Halobacteria. // Biochim. Biophys. Acta, 1979, V. 505 № 3-4, P. 215 279.
- 3. Ovchinnikov Yu.A. Rhodopsin and bacteriorhodopsin: structure-function relationship. // FEBS Lett. 1982, V. 142 № 2, P. 179 191.
- 4. Biophysical Studies of Retinal Proteins. / Eds. Ebrey T.G., Honig B., Frauenfelder H., Nakanishi K. Urbana-Chapaign: University of Illinois Press. 1987. 304 p.
- 5. Methods in Enzymology. / Ed. Packer L. N.Y.: Academic Press. 1982. V. 88 (Biomembranes), Part I. Visual pigments and purple membranes (II).
- 6. Renthal R. Bacteriorhodopsin. // New Compr. Biochemistry. 1992. V. 23 (Molecular Mechanism in Bioenergetics). P. 75 101.
- Light-sensitive biocompexes and optical registration of the information. Ivanitsky G.R. Ed. RAS Puchshino -1985. Светочувствительные биологические комплексы и оптическая регистрация информации. / Ред. Иваницкий Г.Р. - АН СССР: Пущино. -1985.
- 8. Balashov S.P., Litvin F.F. Photochemistry of Bacteriorhodopsin, Moscow: MSU, 1985.
- Skulachev V.P., Drachev L.A., Kaulen A.D., Khitrina L.V., Zorina V.V., Danshina S.V. Proton transport and electrogenous phases in the bacteriorhodopsin photocycle. In: Retinal Proteins (ed. Ovchinnikov Yu.A.), VNU Press: Utrecht, the Netherlands, 1987, P. 531-552.
- Balogh-Nair V., Nakanishi K. Synthetic analogs of retinal, bacteriorhodopsin, and bovine rhodopsin. // in: Methods in Enzymology. / Ed. Packer L. - N.Y.: Academic Press. - V. 88 (Biomembranes), Part I, Visual pigments and purple membranes (II). -1982. - P. 496 - 506.
- Ebrey T.G. Synthetic pigments of rhodopsin and bacteriorhodopsin. // in: Methods in Enzymology. / Ed. Packer L. - N.Y.: Academic Press. - V. 88 (Biomembranes), Part I, Visual pigments and purple membranes (II). - 1982. - P. 516–521.
- Liu R.S.H., Asato A.E. Synthesis and photochemistry of stereoisomers of retinal. // in: Methods in Enzymology. / Ed. Packer L. - N.Y.: Academic Press. - V. 88 (Biomembranes), Part I, Visual pigments and purple membranes (II). - 1982. - P. 506 -516.
- 13. Liu R.S.H., Asato A.E., Photochemistry and synthesis of stereoisomers vitamin A. // Tetrahedron, 1984, V. 40 №11, P. 1931–1969.
- Liu R.S.H. Photochemistry of polyenes related to vitamin A. // in: CRC Handbook of organic photochemistry and photobiology. - N.Y.: CRC Press. - 1995. - Chapter 12. - P. 165 - 172.
- Nakanishi K., Crouch R.K. Application of artificial pigments to structure determination and study of photoinduced transformations of retinal proteins. // Israel J. Chem., 1995, V. 35 № 3-4, P. 253 – 272.
- Liu R.S.H., Asato A.E. The binding site of opsin based on analogs studies with isomeric, fluorinated, alkylated, and other modified retinals. // in: Chemistry and Biology of Synthetic Retinoids. / Eds. Dawson M.I., Okamura W.H. - Boca Raton: CRC Press Inc. -1990. - Chapter 3. - P. 53 – 75.
- Sheves M., Ottolenghi M. Molecular mechanism for the function of bacteriorhodopsin and visual pigments: studies with model compounds and artificial pigments. // in: Chemistry and biology of synthetic retinoids. / Eds. Dawson M.I., Okamura W.H. - Boca Raton: CRC Press Inc. - 1990. - Chapter 5. - P. 99 - 123.

- Crouch R.K. Analog pigments of rhodopsin and bacteriorhodopsin; retinal binding site and role of the chromophore in the function of these pigments. // in: Chemistry and biology of synthetic retinoids. / Eds. Dawson M.I., Okamura W.H. - Boca Raton: CRC Press Inc. - 1990. - Chapter 6. - P. 125 - 146.
- Balogh-Nair V., Nakanishi K. Visual pigment and bacteriorhodopsin analogs. // in: Chemistry and Biology of Synthetic Retinoids. / Eds. Dawson M.I., Okamura W.H. -Boca Raton: CRC Press Inc. - 1990. - Chapter 7. - P. 147 - 176.
- 20. Ottolenghi M., Sheves M. Synthetic retinals as probes for the binding site and photoreaction in rhodopsins. // J. Membrane Biol., 1989, V. 112, P. 193 212.
- Ottolenghi M. The photochemistry of rhodopsins. // Adv. Photochem., 1980, V. 12, P. 97 200.
- 22. Honig B. Light energy transduction in visual pigments and bacteriorhodopsin. // Ann. Rev. Phys. Chem., 1978, V. 29, P. 31 37.
- 23. Birge R.R. Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. // Biochim. Biophys. Acta, 1990, V. 1016, P. 293 327.
- 24. Dencher N.A. The five retinal-protein pigments of halobacteria: bacteriorhodopsin, halorhodopsin, P565, P370; and slow-cycling rhodopsin. // Photochem. Photobiol., 1983, V. 38 № 6, P. 753 757.
- 25. Mitsner B.I., Khodonov A.A. Chromophoric groups of retinylidene proteins in: Lightsensitive biocompexes and optical registration of the information. Ivanitsky G.R. Ed. RAS Puchshino -1985, P. 38 - 49. Мицнер Б.И., Ходонов А.А. Хромофорные группы ретинилиденпротеидов. // в: кн. "Светочувствительные биологические комплексы и оптическая регистрация информации". / Ред. Иваницкий Г.Р. - АН СССР: Пущино. - 1985. - С. 38 - 49.
- Mitsner B.I., Khodonov A.A., Zvonkova E.N., Evstigneeva R.P. Analogues of retinal: synthesis and interaction with bacterioopsin. // Bioorgan. Khim. (Rus), 1986, V. 12 № 1, P. 5-53. Мицнер Б.И., Ходонов А.А., Звонкова Е.Н., Евстигнеева Р.П. Аналоги ретиналя: синтез и взаимодействие с бактериоопсином. // Биоорган. химия, 1986, T. 12 № 1, C. 5 - 53.
- Mitsner B.I., Khodonov A.A., Zvonkova E.N., Karnauchova E.N. Retinal analogs and Nretinylidenepeptides as tools for investigation of bacteriorhodopsin and rhodopsin chromophoric binding sites. // in: Retinal Proteins. / Ed. Ovchinnikov Yu.A. - Utrecht: VNU Press. - The Netherlands. - 1989. - P. 561 - 569.
- Khodonov A.A., Eremin S.V., Lockshin J. L., Shvets V.I., Demina O.V., Khitrina L.V., Kaulen A.D. Retinal analogs and their application for bacteriorhodopsin investigation. // Bioorgan. Khim. (Rus), 1996, V. 22 № 10-11, Р. 745-776. Ходонов А.А., Еремин С.В., Локшин Дж.Л., Швец В.И., Демина О.В., Хитрина Л.В., Каулен А.Д. Аналоги ретиналя и их роль в исследовании бактериородопсина. // Биоорган. химия, 1996, T. 22 №10-11, С. 745 - 776.
- 29. Khodonov A.A. "Synthetic Approach to Investigation of Structure-Activity Relationships in Retinoid-Protein Complexes: Bacteriorhodopsin and Retinoic Acid Nuclear Receptors." Doctor of Sciences Degree Thesis (in Bioorganic Chemistry), Moscow, 1997.
- 30. Alvarez R., Vaz B., Gronemeyer H., de Lera A.R. Functions, Therapeutic Applications, and Synthesis of Retinoids and Carotenoids // Chem. Rev., 2014, V. 114 №1, P. 1-125.
- Barachevsky V.A., Khodonov A.A., Belikov N.E., Laptev A.V., Lukin A.Yu., Demina O.V., Luyksaar S.I., Krayushkin M.M. Properties of Photochromic Retinals. // Dyes and Pigments, 2012, V. 92 №2, P. 831-837.
- 32. Khodonov A.A., Laptev A.V., Lukin A.Y., Belikov N.E., Fomin M.A., Demina O.V., Skladnev D.A., Tyurin S.A., Shvets V.I. Retinoid hybrids as instruments for nanobiophotonics researches. // Vestnik MITHT, 2011, V. 6 №2, Р. 15-36. Ходонов

А.А., Лаптев А.В., Лукин А.Ю., Беликов Н.Е., Фомин М.А., Демина О.В., Складнев Д.А., Тюрин С.А., Швец В.И. Гибридные аналоги ретиноидов: как инструменты для исследований в области нанобиофотоники. // Вестник МИТХТ, 2011, Т. 6 №2, С. 15-36.

- Nakanishi K., Balogh-Nair V., Arnaboldi M., Tsujimoto K., Honig B. An external pointcharge model for bacteriorhodopsin to account for its purple color. // J. Amer. Chem. Soc., 1980, V. 102 № 27, P. 7945 - 7947.
- Motto M.G., Sheves M., Tsujimoto K., Balogh-Nair V., Nakanishi K. Opsin shifts in bovine rhodopsin and bacteriorhodopsin. // J. Amer. Chem. Soc., 1980, V. 102 № 27, P. 7947 - 7949.
- 35. Balogh-Nair V., Carriker J.D., Honig B., Kamat N., Motto M.G., Nakanishi K., Sen R., Sheves M., Tanis M.A., Tsujimoto K. The opsin shift in bacteriorhodopsin studies with artificial bacteriorhodopsins. // Photochem. Photobiol., 1981, V. 33 № 4, P. 483 488.
- Mao B., Govindjee R., Ebrey T.G., Arnaboldi M., Balogh-Nair V., Nakanishi K., Crouch R. Photochemical and functional properties of bacteriorhodopsins formed from 5,6dihydro- and 5,6-dihydrodesmethylretinals. // Biochem., 1981, V. 20 № 2, P. 428 - 435.
- Motto M.G., Nakanishi K. Heavy atom labeling of retinal in bacteriorhodopsin. // in: Methods in Enzymology. / Ed. Packer L. - N.Y.: Academic Press. - V. 88 (Biomembranes), Part I, Visual pigments and purple membranes (II). - 1982. - P. 178 -180.
- Fang J.M., Carriker J.D., Balogh-Nair V., Nakanishi K. Evidence for the necessity of double bond (13-ene)-isomerization in the proton pumping of bacteriorhodopsin. // J. Amer. Chem. Soc., 1983, V. 105 № 15, P. 5162 - 5164.
- 39. Derguini F., Caldwell C.G., Motto M.G., Balogh-Nair V., Nakanishi K. Bacteriorhodopsins containing cyanine dye chromophores. Support for the external point-charge model. // J. Amer. Chem. Soc., 1983, V. 105 № 3, P. 646 – 648.
- Sen R., Widlanski T.S., Balogh-Nair V., Nakanishi K. Photoaffinity labeling of bacteriorhodopsin with 3-(1-[¹⁴C]-diazoacetoxy)-transretinal. // J. Amer. Chem. Soc., 1983, V. 105 № 15, P. 5160 - 5162.
- 41. Derguini F., Bigge C.F., Crotea A.A., Balogh-Nair V., Nakanishi K. Visual pigments and bacteriorhodopsins formed from aromatic retinal analogues. // Photochem. Photobiol., 1984, V. 39 № 5, P. 661 665.
- 42. Okabe M., Balogh-Nair V., Nakanishi K. Proton translocation by synthetic analogs of Bacteriorhodopsin. The role of the polyenic chain length and point charge at the ring site. // Biophys. J., 1984, V.45 № 2, Part 2, P. 272a.
- 43. Sen R., Singh A.K., Balogh-Nair V., Nakanishi K. Photoaffinity labeling of bovine rhodopsin. // Tetrahedron, 1984, V. 40 № 3, P. 493 500.
- 44. Schiffmiller R., Callender R.H., Waddel W.H., Govinjee R., Ebrey T.G., Kakitani H., Honig B., Nakanishi K. Resonance Raman studies of bacteriorhodopsin analogues. // Photochem. Photobiol., 1985, V. 41 № 5, P. 563 567.
- 45. Chang C.H., Govindjee R.G., Ebrey T.G., Bagley K.A., Dollinger G., Eisenstein L., Marque J., Roder H., Vittitow J., Fang J.-M., Nakanishi K. Trans / 13-cis isomerization is essential for both the photocycle and proton pumping of bacteriorhodopsin. // Biophys. J., 1985, V. 47 № 4, P. 509 - 512.
- 46. Derguini F., Dunn D., Eisenstein L., Nakanishi K., Odashima K., Rao V.J., Sastry L., Termini J. Studies with retinal pigments: modified point charge model for bacteriorhodopsin and difference FTIR (Fourier transform infrared) studies. // Pure Appl. Chem., 1986, V. 58 № 6, P. 719 - 724.
- Spudich J.L., McCain D.A., Nakanishi K., Okabe M., Shimizu N., Rodman H., Honig B., Bogomolni R.A. Chromophore / protein interaction in bacterial sensory rhodopsin and bacteriorhodopsin. // Biophys. J., 1986, V. 49, P. 479 - 483.

- 48. Rao V.J., Derguini F., Nakanishi K., Tagushi T., Hosoda A., Hanzava Y., Kobayashi Y., Pande S.M., Callender R.H. 5-(Trifluoromethyl)bacteriorhodopsin does not translocate protons. // J. Amer. Chem. Soc., 1986, V. 108 № 19, P. 6077 6078.
- 49. Ok H., Caldwell C., Schroeder D.R., Singh A.K., Nakanishi K. Synthesis of optically active 3-diazoacetylretinals with triisopropylphenylsulfonylhydrazone. // Tetrahedron Lett., 1988, V. 29 № 19, P. 2275 2278.
- 50. Park M.H., Yamamoto T., Nakanishi K. Probes which reflect the distance between the retinal chromophore and membrane surface in bacteriorhodopsin (bR). Direction of retinal 9-methyl in bR. // J. Amer. Chem. Soc., 1989, V. 111 № 13, P. 4997 4998.
- Buldt G., Dencher N.A., Konno K., Nakanishi K., Plohn H.-J. Heavy-atom labelled retinal localized in the plane of the purple membrane by X-rays diffraction. // Biophys. J., 1989, V. 55 № 2, P. 255a.
- 52. Tierno M.E., Mead D., Asato A.E., Liu R.S.H., Sekiya N., Yoshihara K., Chang C.-W., Nakanishi K., Govindjee R., Ebrey T.G. 14-Fluorobacteriorhodopsin and other fluorinated and 14-substituted analogues. An extra, unusually red-shifted pigment formed during dark adaptation. // Biochem., 1990, V. 29 № 25, P. 5948 – 5953.
- Ding W.-D., Tsipouras A., Ok H., Yamamoto Y., Gawinowicz M.A., Nakanishi K. Photoaffinity labeling of bacteriorhodopsin. // Biochem., 1990, V. 29 № 20, P. 4898 -4904.
- 54. Boehm M.F., Gawinowicz M.A., Foucault A., Derguini F., Nakanishi K. Photoaffinity labeling studies of bacteriorhodopsin with [15-³H]-3-diazo-4-keto-all-trans-retinal. // J. Amer. Chem. Soc., 1990, V. 112 № 21, P. 7779 7782.
- 55. Buldt G., Konno K., Nakanishi K., Plohn H.-J., Rao B.N., Dencher N.A. Heavy-atom labelled retinal analogues located in bacteriorhodopsin by X-ray diffraction. // Photochem. Photobiol., 1991, V. 54 № 6, P. 873 - 879.
- 56. Zhang H., Lerro K.A., Takekuma S.-I., Baek D.-J., Moquin-Pattey C., Boehm M.F., Nakanishi K. Orientation of the retinal 9-methyl group in bacteriorhodopsin as studied by photoaffinity labeling. // J. Amer. Chem. Soc., 1994, V. 116 № 15, P. 6823 6831.
- 57. Nakanishi K., Zhang H., Lerro K.A., Takekuma S.-I., Yamamoto T., Lien T.H., Sastry L., Baek D.-J., Moquin-Pattey C., Boehm M.F., Derguini F., Gawinovicz M.A. Photoaffinity labeling of rhodopsin and bacteriorhodopsin. // Biophys. Chem., 1995, V. 56 № 1-2, P. 13 22.
- 58. Yan B., Spudich J.L., Mazur P., Vunnam S., Derguini F., Nakanishi K. Spectral tuning in bacteriorhodopsin in the absence of counterion and coplanarization effects. // J. Biol. Chem., 1995, V. 270 № 50, P. 29668-29670.
- 59. Cooper R., Snyder J.K. The Biology Chemistry Interface. A Tribute to Koji Nakanishi. Ch. 15, P. 431-444, 1999.
- 60. Renk G., Grover T., Crouch R.K., Mao B., Ebrey T.G. A spin labeled retinal pigment analog of the purple membrane. // Photochem. Photobiol., 1981, V. 33 № 4, P. 489 494.
- 61. Crouch R.K., Ebrey T.G., Govindjee R. A bacteriorhodopsin analogue containing the retinal nitroxide free radical. // J. Amer. Chem. Soc., 1981, V. 103 № 24, P. 7364 7366.
- 62. Tokunaga F., Ebrey T.G., Crouch R. Purple membrane analogs synthesized from C17 aldehyde. // Photochem. Photobiol., 1981, V. 33, P. 495-499.
- 63. Crouch R.K., Or Y.S., Ghent S., Chang Ch.-H., Govindjee R., Ebrey T.G., Callender R.H., Pande A. Neither the retinal ring nor the ring double bond is required for proton pumping in bacteriorhodopsin: acyclic retinal bacterioopsin analogues. // J. Amer. Chem. Soc., 1984, V. 106 № 26, P. 8325 8327.
- 64. Zingoni J., Or Y.S., Crouch R.K., Chang C.-H., Govindjee R., Ebrey T.G. Effect of variation of retinal polyene side-chain length on formation and function of bacteriorhodopsin analogue pigments. // Biochem., 1986, V. 25 № 8, P. 2022-2027.

- 65. Crouch R.K., Scott R., Ghent S., Govindjee R., Chang Ch.-H., Ebrey T. Properties of synthetic bacteriorhodopsin pigments. Futher probes of the chromophore binding site. // Photochem. Photobiol., 1986, V. 43 № 3, P. 297 303.
- 66. Beischel C.J., Mani V., Govinjee R., Ebrey T.G., Knapp D.R., Crouch R.K. Ringoxidized retinals form unusual bacteriorhodopsin analogue pigments. // Photochem. Photobiol., 1991, V. 54 № 6, P. 977 - 983.
- 67. Williams T.C., Mani V. Design of a helix-bundle cross-link: NMR and UVspectroscopic analyses and molecular modeling of ring-oxidized retinals. // Biochem., 1991, V. 30 № 11, P. 2976 - 2988.
- 68. Oatis J., Knapp D., Crouch R.K., Govindjee R., Ebrey T.G. A bacteriorhodopsin analogue pigment formed with a photoaffinity labeled acyclic retinal. // Biophys. J. -Abstracts of 37th annual meeting. - Washington, D.C. 1993. P. A211.
- 69. Feng Y., Menick D.R., Katz B.M., Beischel C.J., Hazard E.S., Misra S., Ebrey T.G., Crouch R.K. Probing of the retinal binding site of bacteriorhodopsin by affinity labeling. // Biochem., 1994, V. 33 № 38, P. 11624 - 11630.
- 70. Beischel C.J., Knapp D.R., Govindjee R., Ebrey TG., Crouch R.K. Azidotetrafluorophenyl retinal analogue: synthesis and bacteriorhodopsin pigment formation // Photochem. Photobiol., 1994, V. 60 № 1, P. 64-68.
- 71. Das J., Crouch R.K., Govindjee R., Balashov S., Ebrey T. Studies on pyrylretinal analogues of bacteriorhodopsin // Photochem. Photobiol. 1999, V.70, №6, P. 949-956.
- 72. Datta-Gupta N., Crouch R.K., Hazard E.S. Categorizing reactivity of Bacteriorhodopsin cysteine mutants crosslinking to 4-Bromoretinal // Biochem. Mol. Biol. International., 1999, V. 47 №5, P. 773-780
- 73. Umadevi P., Sheves M., Rosenbach V., Ottolenghi M. Photochemical studies of artificial bacteriorhodopsins. // Photochem. Photobiol. 1983. V. 38, № 2. P. 197 203.
- 74. Sheves M., Friedman N., Rosenbach V., Ottolenghi M. Preparation of (1,1,5-tridemethyl)bacteriorhodopsin pigment and its photocycle study. // FEBS Lett., 1984, V. 166 № 2, P. 245 247.
- 75. Sheves M., Baasov T., Friedman N., Ottolenghi M., Feinmann-Weinberg R., Rosenbach V., Ehrenberg D. On the binding site of bacteriorhodopsin. A study with artificial pigments. // J. Amer. Chem. Soc., 1984, V. 106 № 8, P. 2435 2437.
- 76. Sheves M., Friedman N., Albeck A., Ottolenghi M. Primary photochemical events in bacteriorhodopsin: study with artificial pigments. // Biochem., 1985, V. 24 № 5, P. 1260 1265.
- 77. Sheves M., Albeck A., Friedman N., Ottolenghi M. Controling the pK_a of bacteriorhodopsin Schiff base by use of artificial retinal analogues. // Proc. Natl. Acad. Sci. USA, 1986, V. 83 №10, P. 3262-3266.
- 78. Albeck A., Friedman N., Sheves M., Ottolenghi M. Role of retinal isomerizations and rotations in the photocycle of bR. // J. Amer. Chem. Soc., 1986, V. 108 № 15, P. 4614 -4618.
- 79. Sheves M., Friedman N. Effect of external negative charge on the absorption maxima of symmetrical cyanines; examination of model compounds and synthetic bacteriorhodopsin pigments // Angew. Chem., IE, 1986, V. 98 № 3, P. 284-286.
- Sheves M., Albeck A., Baasov T., Friedman N. Binding site and molecular changings during bacteriorhodopsin photocycle: study with modified retinal analogs. // in: Retinal Proteins /Ed. Ovchinnikov Yu.A. - VNU Press: Utrecht. - The Netherlands. - 1987. - P. 205 - 216.
- 81. Baasov T., Sheves M. Probing the binding site of bacteriorhodopsin with a fluorescent chromophore. // J. Amer. Chem. Soc., 1987, V. 109 № 5, P. 1594 1596.

- Friedman N., Sheves M., Ottolenghi M. Model system for rhodopsins: the photolysis of protonated retinal Schiff bases, cyanine dye, and artificial cyanine-bacteriorhodopsin. // J. Amer. Chem. Soc. 1989. V. 111, № 9. P. 3203 - 3211.
- Albeck A., Friedman N., Sheves M., Ottolenghi M. Factors affecting the absorption maxima of acidic forms of bacteriorhodopsin. A study with artificial pigments. // Biophys. J., 1989, V. 56, P. 1259-1265.
- 84. Ehrenberg B., Ebrey T.G., Friedma N., Sheves M. The surface potential on the purple membrane measured using a modified bacteriorhodopsin chromophore as the spectroscopic probe. // FEBS Lett., 1989, V. 250 №2, P. 179-182
- 85. Friedman N., Sheves M., Ottolenghi M. Population of the triplet states of bacteriorhodopsin and related model compounds by intramolecular energy transfer. The triplet state of bacteriorhodopsin. // Biochem., 1991, V. 30 № 23, P. 5400 5409.
- 86. Steinberg G., Friedman N., Sheves M., Ottolenghi M. Isomer composition and spectra of the dark and light adapted forms of artificial bacteriorhodopsins. // Photochem. Photobiol., 1991, V. 54 № 6, P. 969-976.
- 87. Delaney J.K., Brack T.L., Atkinson G.H., Ottolenghi M., Friedman N., Sheves M. Picosecond time-resolved resonance Raman spectrum of a K-intermediate in the photoreaction of the artificial bacteriorhodopsin pigment BR6.11. // J. Phys. Chem., 1993, V. 97 №47, P. 12416-12422.
- 88. Humphrey W., Logunov I., Schulten K., Sheves M. Molecular Dynamics Study of Bacteriorhodopsin and Artificial Pigments // Biochem. 1994, V.33 №12, P. 3668-3678.
- 89. Rousso I., Friedman N., Sheves M., Ottolenghi M. pKa of the protonated Schiff base and aspartic 85 in the bacteriorhodopsin binding site is controlled by a specific geometry between the two residues // Biochem., 1995, V. 34 № 37, P. 12059-12065.
- 90. Druckmann S., Ottolenghi M., Rousso I., Friedman N., Sheves M. Time-resolved titrations of the Schiff base and of the Asp85 residue in artificial bacteriorhodopsins // Biochem., 1995, V. 34 №37, P. 12066-12074.
- 91. Delaney J.K., Atkinson G.H., Sheves M., Ottolenghi M. Picosecond Time-Resolved Absorption Dynamics in the Artificial Bacteriorhodopsin Pigment BR6.9 // J. Phys. Chem., 1995, V. 99 № 19, P. 7801-7805.
- 92. Delaney J.K., Brack T.L., Atkinson G.H., Ottolenghi M., Steinberg G., Sheves M. Primary picosecond molecular events in the photoreaction of the BR5.12 artificial bacteriorhodopsin pigment // Proceedings of the National Academy of Sciences of the United States of America, 1995, V. 92 № 6, P. 2101-2105.
- 93. Weidlich O., Friedman N., Sheves M., Siebert F. Influence of the 9-methyl group of the retinal on the photocycle of bacteriorhodopsin studied by time-resolved rapid-scan and static low-temperature Fourier transform infrared difference spectroscopy // Biochem., 1995, V. 34 № 41, P. 13502-13510.
- Logunov I., Humphrey W., Schulten K., ShevesM. Molecular dynamics study of the 13cis form (bR548) of bacteriorhodopsin and its photocycle // Biophys. J., 1995, V. 68 №4, P. 1270-1282.
- 95. Rousso I., Sheves M., Lewis A. Protein Structure Alteration Induced by Light-Activated Water Absorption. A Study with Bacteriorhodopsin // J. Amer. Chem. Soc., 1996, V. 118 № 45, P. 11299-11300.
- 96. Zhong, Q., Ruhman S., Ottolenghi M., Sheves M., Friedman N., Atkinson G.H., Delaney J.K. Reexamining the Primary Light-Induced Events in Bacteriorhodopsin Using a Synthetic C13:C14-Locked Chromophore // J. Amer. Chem. Soc., 1996, V. 118 № 50, P. 12828-12829.
- 97. Weidlich O., Schalt B., Friedman N., Sheves M., Lanyi J.K., Brown L.S., Siebert F. Steric interaction between the 9-methyl group of the retinal and tryptophan 182 controls 13-cis

to all-trans reisomerization and proton uptake in the bacteriorhodopsin photocycle. // Biochem., 1996, V. 35 №33, P. 10807-10814.

- 98. Delaney J.K., Yahalom G., Sheves M., Subramanian S. Reducing the flexibility of retinal restores a wild-type-like photocycle in bacteriorhodopsin mutants defective in protein-retinal coupling // Proceedings of the National Academy of Sciences of the United States of America, 1997, V. 94 № 10, 5028-5033.
- 99. Rousso I., Khachatryan E., Gat Y., Brodsky I., Ottolenghi M., Sheves M., Lewis A. Microsecond atomic force sensing of protein conformational dynamics: implications for the primary light-induced events in bacteriorhodopsin // Proceedings of the National Academy of Sciences of the United States of America, 1997, V. 94 № 15, P. 7937-7941.
- 100. Rousso I., Gat Y., Lewis A., Sheves M., Ottolenghi M. Effective light-induced hydroxylamine reactions occur with C13=C14 nonisomerizable bacteriorhodopsin pigments // Biophys. J., 1998, V. 75 №1, P. 413-417.
- 101. Kolodner P., Lukashev E.P., Ching Y.-C., Rousso I., Sheves M. Electric-field effects in 13-demethyl-11,14-epoxyretinal-bacteriorhodopsin films // Photochem. Photobiol., 1999, V. 70 №1, P. 103-110.
- 102. Rodig C., Georg H., Siebert F., Rousso I., Sheves M. Temperature effects of excitation laser pulses during step-scan FT-IR measurements // Laser Chemistry, 1999, V. 19 №1-4, P. 169-172.
- 103.Ye T., Gershgoren E., Friedman N., Ottolenghi M., Sheves M., Ruhman S. Resolving the primary dynamics of bacteriorhodopsin, and of a 'C13:C14 locked' analog, in the reactive excited state // Chem. Phys. Lett., 1999, V. 314 № 5-6, P. 429-434.
- 104. Ye T., Friedman N., Gat Y., Atkinson G.H., Sheves M., Ottolenghi M., Ruhman S. On the nature of the primary light-induced events in bacteriorhodopsin: ultrafast spectroscopy of native and C13=C14 locked pigments // J. Phys. Chem. B, 1999, V. 103 №24, P. 5122-5130.
- 105. Aharoni A., Weiner L., Ottolenghi M., Sheves M. Bacteriorhodopsin experiences lightinduced conformational alterations in nonisomerizable C13=C14 pigments. A study with EPR // J. Biol. Chem., 2000, V. 275 № 28, P. 21010-21016.
- 106. Ujj L., Zhou Y., Sheves M., Ottolenghi M., Ruhman S., Atkinson G.H.Vibrational Spectrum of a Picosecond Intermediate in the Artificial BR5.12 Photoreaction: Picosecond Time-Resolved CARS of T5.12 // J. Amer. Chem. Soc., 2000, V. 122 № 1, P. 96-106.
- 107. Aharoni A., Ottolenghi M., Sheves M. Retinal isomerization in bacteriorhodopsin is controlled by specific chromophore-protein interactions. A study with noncovalent artificial pigments. // Biochem., 2001, V.40, №44, P. 13310–13319.
- 108. Aharoni A., Hou B., Friedman N., Ottolenghi M., Rousso I., Ruhman S., Sheves M., Ye T., Zhong Q. Non-isomerizable artificial pigments: implications for the primary light-induced events in bacteriorhodopsin // Biochem. (Moscow), 2001, V. 66 №11, P. 1210-1219.
- 109. Eliash T., Weiner L., Ottolenghi M., Sheves M. Specific binding sites for cations in bacteriorhodopsin // Biophys. J., 2001, V. 81 №2, P. 1155-1162.
- 110. Atkinson G.H., Zhou Y., Ujj L., Aharoni A., Sheves M., Ottolenghi M. Dynamics and Retinal Structural Changes in the Photocycle of the Artificial Bacteriorhodopsin Pigment BR6.9 // J. Phys. Chem. A 2002, V.106 №14, P. 3325-3336.
- 111. Aharoni A., Ottolenghi M., Sheves M. Light-induced hydrolysis and rebinding of nonisomerizable bacteriorhodopsin pigment // Biophys. J., 2002, V. 82 №5, P. 2617-2626.
- 112. Aharoni A., Ottolenghi M., Sheves M. Photoreduction of bacteriorhodopsin Schiff base at low humidity. A study with C13=C14 nonisomerizable artificial pigments // Photochem. Photobiol., 2002, V. 75 № 6, P. 668-674.

- 113. Zadok U., Khatchatouriants A., Lewis A., Ottolenghi M., Sheves M.Light-Induced Charge Redistribution in the Retinal Chromophore Is Required for Initiating the Bacteriorhodopsin Photocycle // J. Amer. Chem. Soc., 2002, V. 124 №40, P. 11844-11845.
- 114. Hou B., Friedman N., Ottolenghi M., Sheves M., Ruhman S. Comparing photoinduced vibrational coherences in bacteriorhodopsin and in native and locked retinal protonated Schiff bases // Chem. Phys. Lett., 2003, V. 381 №5-6, P. 549-555.
- 115. Aharoni A., Khatchatouriants A., Manevitch A., Lewis A., Sheves M. Protein-b-Ionone Ring Interactions Enhance the Light-Induced Dipole of the Chromophore in Bacteriorhodopsin // J. Phys. Chem. B, 2003, V. 107 №25, P. 6221-6225.
- 116. Gross R., Schumann C., Wolf M.M.N., Herbst J., Diller R., Friedman N., Sheves M. Ultrafast protein conformational alterations in bacteriorhodopsin and its locked analogue BR5.12 // J. Phys. Chem. B, 2009, V. 113 №22, P. 7851-7860.
- 117. Schreckenbach T., Walckhoff B., Oesterhelt D. Studies of retinal-protein interaction in bacteriorhodopsin. // Eur. J. Biochem., 1977, V. 76, P. 499-511.
- 118. Schreckenbach T., Walckhoff B., Oesterhelt D. Specificity of the retinal binding site of bacteriorhodopsin: chemical and stereochemical requirements for the binding of retinol and retinal. // Biochem., 1978, V. 17 № 25, P. 5353-5359.
- 119. Muradin-Szweykowska M., Broek A.D., Lugtenburg J., van der Bend R.L., van Dijke P.W.M. Bacteriorhodopsins with a chemically modified chromophore. The light-driven proton pump action of [19-demethyl-11,14-epoxy]-, [9-demethyl]-, [13-demethyl]- and [9,13-bisdemethyl]-bacteriorhodopsin. // Recl. Trav. Chim. Pays-Bas., 1983, V. 102 №1, P. 42 46.
- 120. Broek A.D., Muradin-Szweykowska M., Courtin J.M.L., Lugtenburg J. Preparation of 11,14-epoxy-bridged and isomeric chain-demethylated retinals. 13-Demethyl-11,14epoxy-, 9-demethyl-, 13-demethyl- and 9,13-bisdemethyl-retinals. // Recl. Trav. Chim. Pays-Bas, 1983, V. 102, № 1, P. 46 - 51.
- 121. Muradin-Szweykowska M., van Amsterdam L.J.P., Rodenburg L.J.M., Lugtenburg J., van der Bend R.L., van Dam K. (5-demethyl)-Bacteriorhodopsin analogue: its formation and ligth-driven proton pump action. // FEBS Lett., 1983, V. 154 № 1, P. 180 184.
- 122. Muradin-Szweykowska M., Peters A.J.M., Lugtenburg J. The interaction of bacterioopsin with 11,14-bridged retinals. The synthesis of 13-demethyl-11,14-imino-, 13-demethyl-N-methyl-11,14-imino-, 13-demethyl-11,14-thio-, 13-demethyl-11,14etheno-, 11,14-imino-retinals and their binding with bacterioopsin. // Recl. Trav. Chim. Pays-Bas, 1984, V. 103 № 4, P. 105 - 109.
- 123. Muradin-Szweykowska M., Pardoen J.A., Dobbelstein D., van Amsterdam L.J.P., Lugtenburg J. Bacteriorhodopsin with chromophores modified at the β-ionone site. Formation and light-driven action of the proton pump. // Eur. J. Biochem., 1984, V. 140 № 1, P. 173 - 176.
- 124. Lugtenburg J., Muradin-Szweykowska M., Heermans C., Pardoen J., Harbison G.S., Herzfeld J., Griffin R.G., Smith S.O., Mathies R.A. Mechanism for the opsin shift of retinal's absorption in bacteriorhodopsin. // J. Amer. Chem. Soc., 1986, V. 108 № 11, P. 3104 - 3105.
- 125. van der Steen R., Biessheuvel P.L., Mathies R.A., Lugtenburg J. Retinal analogues with locked 6-7 conformations show that bR requires the 6-s-trans conformation of the chromophore. // J. Amer. Chem. Soc., 1986, V. 108 № 20, P. 6410 6411.
- 126. Courtin J.M.L., Verhagen L., Biesheuvel P.L., Lugtenburg J., van der Bend R.L., van Dam. K. Bacteriorhodopsin. The influence of the cyclohexene ring methyls. // Recl. Trav. Chim. Pays-Bas, 1987, V. 106 № 4, P. 112 119.
- 127. van der Steen R., Biesheuvel P.L., Erkelens C., Mathies R.A., Lugtenburg J. 8,16- And 8,18-methanobacteriorhodopsin. Synthesis and spectroscopy of 8,16- and 8,18-

methanoretinal and their interaction with bacterioopsin. // Recl. Trav. Chim., Pays-Bas, 1989, V. 108 № 3, P. 83 - 93.

- 128. Spijker-Assink M.B., Robijn G.W., Ippel J.H., Lugtenburg J., Groen B.H., van Dam K. (1R) and (1S)-5-demethyl-8,16-methanobacteriorhodopsin and its properties. The synthesis and spectroscopy of 5-demethyl-8,16-retinal in optically active and isotopic forms. // Recl. Trav. Chim. Pays-Bas, 1992, V. 111 № 1, P. 29 - 40.
- 129. Groesbeek, M., van Galen, A.J. J., Ippel, J.H., Berden, J.A., Lugtenburg, J. Three bacteriorhodopsins with ring-didemethylated 6-s-locked chromophores and their properties // Recl. Trav. Chim., Pays-Bas, 1993, V. 112 №4, P. 237-246.
- 130. Groesbeek M., Kirillova Yu.G., Boeff R., Lugtenburg J. Synthesis of six novel retinals and their interaction with bacterioopsin. // Recl. Trav. Chim. Pays-Bas, 1994, V. 113 № 1, P. 45 52.
- 131. Ippel J.H., Spijker-Assink M.B., Groesbeek M., van der Steen R., Altona C., Lugtenburg J. Conformational analysis of all-E-retinal, all-E-8,16-methanoretinal, (1S)all-E-8,16-methano-18-norretinal, and all-E-17,18-dinor-8,16-methanoretinal by means of NMR spectroscopy and molecular dynamics. // Recl. Trav. Chim. Pays-Bas, 1994, V. 113 № 2, P. 99 – 108.
- 132. Groesbeek M., Lugtenburg J. Synthesis of nitroxide containing polyenes: two chemically modified retinals and their interaction with bacterioopsin. // Recl. Trav. Chim., Pays-Bas, 1995, V. 114 № 9-10, P. 403 409.
- 133. Asato A.E., Mead D., Denny M., Bopp T.T., Liu R.S.H. 19,19,19-Trifluororetinal and 20,20,20-trifluororetinal. // J. Amer. Chem. Soc., 1982, V. 104 № 18, P. 4979 4981.
- 134. Maeda A., Asato A.E., Liu R.S.H., Yoshizawa T. Interaction of aromatic retinal analogues with apopurple membranes of Halobacterium halobuim. // Biochem., 1984, V. 23 № 11, P. 2507 2513.
- 135. Hanzawa Y., Yamada A., Kobayashi Y. Preparation of 19,19,19-trifluororetinal(9-trifluoromethylretinal). // Tetrahedron Lett., 1985 V. 26 № 24, P. 2881 2884.
- 136. Rao V.J., Zingoni J.P., Crouch R.K., Denny M., Liu R.S.H. Isomers of 3,7,11trimethyldodeca-2,4,6,8,10-pentaenal (a linear analogue of retinal) and lower homologues in their interaction with bovine opsin and bR. // Photochem. Photobiol., 1985, V. 41 № 2, P. 171 - 174.
- 137. Zhang B.-W., Asato A.E., Denny M., Mirzadegan T., Trehan A., Liu R.S.H. Isomers, visual pigment and bR analogs of 3,7,13-trimethyl-10-isopropyl-2,4,6,8,10-tetradecapentaenal and 3,7,11-trimethyl-10-isopropyl-2,4,6,8,10-dodecapentaenal (two ring open retinal analogs). // Bioorgan. Chem., 1989, V. 17, P. 217 223.
- 138. Asato A.E., Li X.-Y., Mead D., Patterson G.M., Liu R.S.H. Azulenic retinoids and corresponding bacteriorhodopsin analogues. Unusually red-shifted pigments. // J. Amer. Chem. Soc., 1990, V. 112 № 20, P. 7398 7399.
- 139. Liu R.S.H., Liu C.W., Li X.-Y., Asato A.E. Butyl conformational reorganization as a possible explanation for the longitudinal flexibility of the binding site of bacteriorhodopsin. The azulene and C-22 retinoid analogs. // Photochem. Photobiol., 1991, V. 54 № 4, P. 625 631.
- 140. Colmenares L.U., Liu R.S.H. An unexpected C-19 product from reaction of retinal with MnO₂. Structure characterization and bacteriorhodopsin analogs. // Tetrahedron Lett., 1991, V. 32 № 17, P. 1933 1936.
- 141. Liu R.S.H., Krogh E., Li X.-Y., Mead D., Colmenares L.U., Thiel J.R., Ellis J., Wong D., Asato A.E. Analyzing the red-shift characteristics of azulenic, naphthyl, other ring-fused and retinyl pigment analogs of bacteriorhodopsin. // Photochem. Photobiol., 1993, V. 58 № 5, P. 701 705.

- 142. Hirayama J., Imamoto Y., Shichida Y., Yoshizawa T., Asato A.E., Liu R.S.H., Kamo N. Shape of the chromophore binding site in pharaonis phoborhodopsin from a study using retinal analogs. // Photochem. Photobiol., 1994, V. 60 № 4, P. 388 393.
- 143. Colmenares L.U., Mead D., Yoshida W., Alam M., Liu R.S.H. A ¹⁹F NMR study of bis(trifluoromethyl)phenyl bacteriorhodopsin analogs. // J. Phys. Chem., 1996, V. 100 № 21, P. 9172 9174.
- 144. Bell J.R., Muthyala R.S., Larsen R.W., Alam M., Liu R.S.H. Photoactivities of the Red-Shifted Azulenic Bacteriorhodopsin Analogs // J. Phys. Chem. A, 1998, V.102 №28, P. 5481–5483.
- 145. Muthyala R.S.; Alam M., Liu R.S.H. Alkylated azulenic retinal and bacteriorhodopsin analogs // Tetrahedron Lett., 1998, V. 39 № 1/2, P. 5-8.
- 146. Liu R.S.H., Muthyala R., Wang X.-S., Asato A.E., Wang P., Ye C. Correlation of Substituent Effects and Energy Levels of the Two Lowest Excited States of the Azulenic Chromophore // Organic Lett., 2000, V. 2 № 3, P. 269–271.
- 147. Muthyala R., Watanabe D., Asato A.E., Liu R.S.H., The nature of the delocalized cations in azulenic bacteriorhodopsin analogs // Photochem. Photobiol., 2001, V. 74 №6, P. 837–845.
- 148.Liu R.S.H., Asato A.E. Tuning the color and excited state properties of the azulenic chromophore: NIR absorbing pigments and materials // J. Photochem. Photobiol. C, 2003, V. 4 №3, P. 179 194
- 149. Oesterhelt D., Christoffel V. Reconstitution of proton pump. // Biochem. Soc. Trans., 1976, V. 4 № 4, P. 556 559.
- 150. Sumper M., Herrmann G. Biosynthesis of purple membrane: control of retinal synthesis by bacterio-opsin // FEBS Lett., 1976, V. 71 № 2, P. 333-336.
- 151.Gartner W., Hopf H., Hull W.E., Scheutzov D., Oesterhelt D., Towner P. On the photoisomerization of 13-desmethylretinal. // Tetrahedron Lett., 1980, V. 21 № 4, P. 347 350.
- 152. Towner P., Gaertner W., Walckhoff B., Oesterhelt D., Hopf H. α-Retinal as a prostetic group in bacteriorhodopsin. // FEBS Lett., 1980, V. 117 № 1, P. 363 367.
- 153. Towner P., Gartner W., Walckhoff B., Oesterhelt D., Hopf H. Regeneration of rhodopsin and bacteriorhodopsin. The role of retinal analogs as inhibitors. // Eur. J. Biochem., 1981, V. 117 № 2, P. 353 – 369.
- 154. Gartner W., Oesterhelt D., Towner P., Hopf H., Ernst L. 13-(Trifluoromethyl)retinal forms an active and far red-shifted chromophore in bacteriorhodopsin. // J. Amer. Chem. Soc., 1981, V. 103 № 25, P. 7642 7643.
- 155. Gartner W., Towner P., Hopf H., Oesterhelt D. Removal of methyl groups from retinal controls the activity of bacteriorhodopsin. // Biochem., 1983, V. 22 № 11, P. 2637 2644.
- 156. Koelling E., Gartner W., Oesterhelt D., Ernst L. Sterich fixiertes retinal analogon verhindert protonenpumpaktiviat in bacteriorhodopsin. // Angew. Chem., 1984, B, V. 96 № 1, S. 76 - 78.
- 157. Polland J.J., Franz M.A., Zinth W., Kaiser W., Kolling E., Oesterhelt D. Optical picosecond studies of bacteriorhodopsin containing a sterically fixed retinal. // Biochim. Biophys. Acta, 1984, V. 767 № 3, P. 635 639.
- 158. Gartner W., Oesterhelt D., Seifer-Schiller E., Towner P., Hopf H., Bohm I. Acetylenic retinals form functional bacteriorhodopsins but do not bovine rhodopsins. // J. Amer. Chem. Soc., 1984, V. 106 № 19, P. 5654 5659.
- 159. Tavan P., Schulten K., Gaertner W., Oesterhelt D. Substituents at the C13 position of retinal and their influence on the function of bacteriorhodopsin // Biophys. J., 1985, V. 47 №3, P. 349-355.

- 160. Trissl H.-W., Gartner W. Rapid charge separation and bathochromic absorption shift of flash-excited bacteriorhodopsins containing 13-cis or all-trans forms of substituted retinals. // Biochem., 1987, V. 26 № 3, P. 751 758.
- 161. Kolling E., Oesterhelt D., Hopf H., Krause N. Regulation of the 6-s equilibrium conformation of retinal in bR by substitution at c-5. 5-Methoxy- and 5ethylretinalbacteriorhodopsin. // Angew. Chem., Int. Ed. Engl., 1987, V. 26 № 6, P. 580 -583.
- 162. Gartner W., Oesterhelt D., Vogel D., Maurer R., Schneider S. Photocycles of bacteriorhodopsins containing 13-alkyl-substituted retinals. // Biochem., 1988, V. 27 № 9, P. 3497 3502.
- 163. Gartner W., Oesterhelt D. Methoxyretinals in bacteriorhodopsin. Absorption maxima, cistrans isomerization and retinal protein interaction. // Eur. J. Biochem., 1988. V. 176. P. 641-648.
- 164. Noguchi T., Kolaczkowski S., Gartner W., Atkinson G.H. Resonance Raman Spectra of 13-Demethylretinal Bacteriorhodopsin and of a Picosecond Bathochromic Photocycle Intermediate. // J. Phys. Chem., 1990, V. 94 № 12, P. 4920-4926.
- 165. Brack T.L., Gaertner W., Atkinson G.H. Picosecond time-resolved fluorescence spectroscopy of 13-demethylretinal bacteriorhodopsin // Chem. Phys. Lett. 1992, V. 190 №3-4, P. 298-304.
- 166. Hoischen D., Steinmuller S., Buss V., Gartner W., Martin H.-D. Merocyanines as extremely bathochromically chromophores in the halobacterial membrane protein bacteriorhodopsin. // Angew. Chem., Int Ed. Engl., 1997, V. 36 № 15, P. 1630 1633.
- 167. Kollbach G., Steinmuller S., Berndsen T., Buss V., Gartner W. The chromophore induces a correct folding of the polypeptide chain of bacteriorhodopsin. // Biochem., 1998, V. 37 №22, P. 8227-8232.
- 168. Losi, A., Michler, I., Gartner, W., Braslavsky, S.E. Time-resolved thermodynamic changes photoinduced in 5,12-trans-locked bacteriorhodopsin. Evidence that retinal isomerization is required for protein activation // Photochem. Photobiol.. 2000, V. 72 №5, P. 590-597.
- 169. Sokolova N.A., Mitsner B.I., Zakis V.I. Synthesis of 4-keto- and 4-hydroxyderivatives of all-E- and 13Z-retinal and their interaction with bacterioopsin. // Bioorgan. Khim.(Rus), 1979, V. 5, № 7, Р. 1053-1058. Соколова Н.А., Мицнер Б.И., Закис В.И. Синтез 4-кето- и 4-гидроксипроизводных all-Е- и 13Z-ретиналей и их взаимодействие с бактериоопсином. // Биоорган. химия, 1979, Т. 5 № 7, С. 1053 1058.
- 170. Ovchinnikov Yu.A., Shkrob A.M., Rodionov A.V., Mitsner B.I. An effective competitive inhibitor of bacteriorhodopsin retinal recombination. // FEBS Lett., 1979, V. 97 № 1, P. 15 19.
- 171. Serebryanyi V.A., Mitsner B.I., Zakis V.I., Tsetlin V.I. Bacteriorhodopsin analogs from C-4-substituted retinals. // Віоогдан. Кhim.(Rus), 1981, V. 7 № 11, Р. 1731-1733. Серебряный В.А., Мицнер Б.И., Закис В.И., Цетлин В.И. Аналоги бактериородопсина на основе 4-замещенных ретиналей. // Биоорган. химия, 1981, Т. 7 № 11, С. 1731 1733.
- 172. Shkrob A.M., Rodionov A.V., Ovchinnikov Yu.A. Aromatic analogues of bacteriorhodopsin. // Bioorgan. Khim. (Rus), 1981, V. 7 № 8, Р. 1169-1194. Шкроб А.М., Родионов А.В., Овчинников Ю.А. Ароматические аналоги бактериородопсина. // Биоорган. химия, 1981, Т. 7 № 8, С. 1169 1194.
- 173. Eremin S.V., Mitsner B.I., Khodonov A.A., Evstigneeva R.P. all-E-Retinal analogs with fixed aldehyde group. // Bioorgan. Khim. (Rus), 1984, V. 10 № 2, Р. 256-259. Еремин С.В., Мицнер Б.И., Ходонов А.А., Евстигнеева Р.П. all-E-Аналоги ретиналя с

фиксированной альдегидной группой. // Биоорган. химия, 1984, Т. 10 № 2, С. 256 - 259.

- 174.Drachev A.L., Drachev L.A., Evstigneeva R.P., Kaulen A.D., Lazarova Z.R., Laykhter A.L., Mitsner B.I., Skulachev V.P., Khitrina L.V., Chekulaeva L.N. The electrogenic steps in photocycles of bacteriorhodopsin analogs with modified retinals. // Biolog. membranes (Rus), 1984, V. 1 № 11, P. 1125-1142. Драчев А.Л., Драчев Л.А., Евстигнеева Р.П., Каулен А.Д., Лазарова Ц.Р., Лайхтер А.Л., Мицнер Б.И., Скулачев В.П., Хитрина Л.В., Чекулаева Л.Н. Электрогенные стадии в фотоцикле аналогов бактериродопсина, содержащих остатки производных ретиналя. // Биол. мембраны, 1984, Т. 1 № 11, С. 1125 1142.
- 175. Khodonov A.A., Mitsner B. I., Zvonkova E.N., Evstigneeva R.P. Aromatic analogues of 13-cis- and 13-trans-retinal. // Віоогдан. Кhim. (Rus), 1987, V. 13 № 2, P. 238-251. Ходонов А.А., Мицнер Б.И., Звонкова Е.Н., Евстигнеева Р.П. Ароматические аналоги 13-цис- и полностью-транс-ретиналя. // Биоорган. химия, 1987, Т. 13 № 2, С. 238 251.
- 176. Drachev L.A., Zorina V.V., Mitsner B.I., Khitrina L.V., Khodonov A.A., Chekulaeva L.N. Photocycle and electrogenesis of 13-cis- and all-trans- aromatic bacteriorhodopsin analogs. // Biokhimia (Rus), 1987, V. 52, № 9, Р. 1559-1569. Драчев Л.А., Зорина В.В, Мицнер Б.И., Хитрина Л.В., Ходонов А.А., Чекулаева Л.Н. Фотоцикл и электрогенез 13-цис- и полностью-транс- ароматических аналогов бактериородопсина. // Биохимия, 1987, Т. 52 № 9, С. 1559 1569.
- 177. Eremin S.V., Mitsner B.I., Zvonkova E.N., Evstigneeva R.P. Aryl-containing all-transand 13-cis-retinal analogues and their noncovalent complexes with bacterioopsin. // Bioorgan. Khim. (Rus), 1987, V. 13 № 8, Р. 1116-1124. Еремин С.В., Мицнер Б.И., Звонкова Е.Н., Евстигнеева Р.П. Арилсодержащие аналоги полностью-транс- и 13цис-ретиналей и их нековалентные комплексы с бактериоопсином. // Биоорган. химия, 1987, Т. 13 № 8, С. 1116 - 1124.
- 178. Eremin S.V., Mitsner B.I., Danshina S.V., Khitrina L.V. Synthesis and properties of C-13-substituted retinals. // Віоогдан. Кніт.(Rus), 1988, V. 14 № 3, Р. 434-436. Еремин С.В., Мицнер Б.И., Даншина С.В., Хитрина Л.В. Синтез и свойства С₁₃замещенных ретиналей. // Биоорган. химия, 1988, Т. 14 № 3, С. 434 - 436.
- 179. Khitrina L.V., Lazarova Tz.R. Investigation of 13-cis- and all-trans-isomers of 4ketobacteriorhodopsin. // Biokhimiya (Rus), 1989, V. 54 № 1, Р. 136-138. Хитрина Л.В., Лазарова Ц.Р. Исследование 13-цис- и полностью-транс-изомеров 4кетобактериородопсина. // Биохимия, 1989, Т. 54 № 1, С. 136 -138.
- 180. Danshina S.V., Drachev A.L., Drachev L.A., Eremin S.V., Kaulen A.D., Mitsner B.I., Khitrina L.V., Chekulaeva L.N. Photocycle and electrogenesis of 13desmethylbacteriorhodopsin. // Biophysics (Rus), 1989, V. 34 № 4, Р. 623-626. Даншина С.В., Драчев А.Л., Драчев Л.А., Еремин С.В., Каулен А.Д., Мицнер Б.И., Хитрина Л.В., Чекулаева Л.Н. Фотоцикл и электрогенез 13дезметилбактериородопсина. // Биофизика, 1989, Т. 34 № 4, С. 623 - 626.
- 181. Drachev L.A., Drachev A.L., Chekulaeva L.N., Evstigneeva R.P., Kaulen A.D., Khitrina L.V., Khodonov A.A., Lazarova Z.R., Mitsner B.I. An investigation of the electrochemical cycle of bacteriorhodopsin analogs with modified ring. // Archiv. Biochem. Biophys., 1989, V. 270 № 1, P. 184 197.
- 182. Eremin S.V., Mitsner B.I., Danshina S.V., Drachev L.A., Kaulen A.D., Khitrina L.V. Photocycle and electrogenesis of bacteriorhodopsin analogs, containing C13 modified retinals. // Bioorgan. Khim.(Rus), 1989, V. 15 № 11, Р. 1484-1497. Еремин С.В., Мицнер Б.И., Даншина С.В., Драчев Л.А., Каулен А.Д., Хитрина Л.В. Фотоцикл и электрогенез аналогов бактериородопсина, содержащих С₁₃-замещенные ретинали. // Биоорган. химия, 1989, Т. 15 № 11, С. 1484 1497.

- 183. Danshina S.V., Drachev A.L., Drachev L.A., Kaulen A.D., Mitsner B.I., Khitrina L.V., Khodonov A.A. 13-cis and all-trans- isomers of 11,12-didehydrobacteriorhodopsin. -Bioorgan. Khim.(Rus), 1989, V. 15 N 3, P. 175–180. Даншина С.В., Драчев Л.А., Драчев А.Л., Каулен А.Д., Хитрина Л.В., Ходонов А.А., Мицнер Б.И. Цис- и трансизомеры 11,12-дидегидробактерио-родопсина. // Биоорган. химия, 1989, Т. 15 № 3, С. 307 - 312.
- 184. Danshina S.V., Drachev A.L., Drachev L.A., Eremin S.V., Kaulen A.D., Khitrina L.V., Mitsner B.I. C₁₃-substituted bacteriorhodopsin analogs. // Archiv. Biochem. Biophys., 1990, V. 279 № 2, P. 225 - 231.
- 185. Бондарев С.Л., Бельков М.В. Спектрально-люминесцентные свойства антрилретиналя, флуоресцирующего аналога ретиналя. // Ж. прикладной спектроскопии, 1990, Т. 52 № 1, С. 24 30.
- 186. Khitrina L.V., Drachev L.A., Eremin S.V., Kaulen A.D., Khodonov A.A. M-intermediate in the 13-cis-cycle of bacteriorhodopsin analogs. // Structure and functions of retinal proteins. in: Colloque INSERM. / Ed. Rigaud J.L. - Dourdan: John Libbey Eurotex Ltd. -France. - 1992. - V. 221. - P. 167 - 170.
- 187. Drachev L.A., Kaulen A.D., Khitrina L.V., Eremin S.V., Khodonov A.A., Shvets V.I., Chekulaeva L.N. M-like intermediate formation in 13-cis-bacteriorhodopsin analogs photocycle. // Biokhimiya (Rus.), 1993, V. 58 № 6, Р. 819-826. Драчев Л.А., Каулен А.Д., Еремин С.В., Хитрина Л.В., Ходонов А.А., Швец В.И., Чекулаева Л.Н. Образование М-подобного интермедиата в фотоцикле 13-цис-аналогов бактериородопсина. // Биохимия, 1993, Т. 58 № 6, С. 819 - 826.
- 188. Kirillova Yu.G., Khitrina L.V., Khodonov A.A. Interaction of methylcyclopentene analogs 13-cis-retinals with bacterioopsin. // Biolog. membranes (Rus), 1993, V. 10 № 4, P. 447-448. Кириллова Ю.Г., Хитрина Л.В., Ходонов А.А. Взаимодействие метилциклопентеновых аналогов 13-цис-ретиналя с бактериоопсином. // Биологические мембраны, 1993, V. 10 № 4, С. 472 - 473.
- 189. Kirillova Yu.G., Eremin S.V., Khitrina L.V., Mitsner B.I. Cyclopentene and cyclohexene analogs retinals differently interacted with bacterioopsin. // Bioorgan. Khim. (Rus), 1993, V. 19 № 8, Р. 825-835. Кириллова Ю.Г., Еремин С.В., Хитрина Л.В., Мицнер Б.И. Циклопентеновый и циклогексеновый аналоги ретиналя поразному реагируют с бактериоопсином. // Биоорган. химия, 1993, Т. 19 № 8, С. 825 - 835.
- 190. Khitrina L.V., Eremin S.V., Khodonov A.A., Kaulen A.D. Chromophore-forming isomers of 11,12-didehydrobacteriorhodopsin. // Biolog. Memranes (Rus), 1994, V. 11 № 5, Р. 575-576. Каулен А.Д., Еремин С.В., Хитрина Л.В., Ходонов А.А. Хромофоробразующие изомеры 11,12-дидегидробактериородопсина. // Биологические мембраны, 1994, Т. 11 № 5, С. 581 582.
- 191. Kirillova Yu.G. Synthesis of polyenic aldehydes retinal analogs. Ph.D. thesis, 1994, Moscow: МІТКНТ. Кириллова Ю.Г. // Синтез полиеновых альдегидов аналогов ретиналя. Дис. ... канд. хим. наук. М.: МИТХТ. 1994.
- 192. Khitrina L.V., Kaulen A.D., Eremin S.V., Khodonov A.A. Bacteriorhodopsin. Protein' restrictions of chromophore isomerisation. // Molecular Biology (Russ), 1995, V. 29 № 6, P. 1398-1407. Хитрина Л.В., Каулен А.Д., Еремин С.В., Ходонов А.А. Бактериородопсин. Белковые ограничения изомеризации хромофора. // Молекулярная биология, 1995, Т. 29 № 6, С. 1398 1407.
- 193. Khodonov A.A., Demina O.V., Khitrina L.V., Kaulen A.D., Silfsten P., Parkkinen S., Jaaskelainen T., Parkkinen. J. Modified Bacteriorhodopsins as a basis for new optical devices. // Sensors and Actuators, part B, 1997, V. B 39 № 1-3, P. 218-221.
- 194. Ivanova D.I., Eremin S.V., Shvets V.I. The synthesis of a coumarin analog of retinal // Tetrahedron, 1996, V. 52 № 28, P. 9581-9588.

- 195. Khitrina L.V., Eremin S.V., Khodonov A.A., Shvets V.I., Kaulen A.D. 13-Demethylbacteriorhodopsin. Formation and some properties // Biologicheskie Membrany, 1998, V. 12 № 1, 121-123. Хитрина Л.В., Еремин С.В., Ходонов А.А., Швец В.И., Каулен А.Д. 13-дезметилбактериородопсин. Образование и некоторые свойства. // Биологические мембраны, 1998. Т.15 № 1, С. 97-98.
- 196. Leppanen, V.P., Vanhanen J., Jaaskelainen T., Parkkinen J.P.S., Parkkinen S. Photocycle of the 4-keto bacteriorhodopsin // Proceedings of SPIE, 1998, V. 3347(Optical Recording Mechanisms and Media), P. 58-60.
- 197. Ivanova D., Kolev V., Lazarova T., Padros E. Synthesis of new heterocyclic and polycyclic aromatic retinals and their bacteriorhodopsin analogs // Tetrahedron Lett., 1999, V. 40 № 13, P. 2645-2648.
- 198. Vanhanen J., Leppanen V.P., Jaaskelainen T., Parkkinen J.P.S., Parkkinen S. Nonlinear transmittance of the 4-keto bacteriorhodopsin // Optical Materials, 1999, V. 12, P. 473-480.
- 199. Khodonov A.A., Lukin A.Yu., Shevyakov S.V., Mironova E.V., Shvets V.I., Alexeeva S.G., Demina O.V., Terpugov E.L., Degtyareva O.V., Khitrina L.V., Kaulen A.D. Synthesis and properties of a new crown ether-containing dyes // Mol. Cryst. Liq. Cryst., 2000, V. 345, P. 15–20.
- 200. Khodonov A.A., Shevyakov S.V., Mironova E.V., Shvets V.I., Demina O.V., Khitrina L.V., Kaulen A.D. Bacteriorhodopsin analogs, bearing modified chromophore as a basis for the photochromic materials. // Mol. Cryst. Liq. Cryst., 2000, V. 345, P. 317-322.
- 201. Shevyakov S.V. Synthesis of retinal analogs with heavy-atom labels and study its reaction with bacterioopsin. Ph.D. thesis, 2000, Moscow: МІТКНТ Шевяков С.В. Синтез аналогов ретиналя, содержащих электроно-плотные метки, и их реакция с бактериоопсином. Дис. ... канд. хим. наук. М.: МИТХТ. 2000.
- 202. Frydrych M., Silfsten P., Parkkinen S., Parkkinen J., Jaaskelainen T. Color sensitive retina based on bacteriorhodopsin // BioSystems, 2000, V. 54, P. 131–140.
- 203. Jussila T., Tkachenko N.V., Parkkinen S., Lemmetyinen H. Kinetics of photo-active bacteriorhodopsin analog 3,4-didehydroretinal // J. Photochem. Photobiol., B, 2001, V. 62 № 3, P. 128-132.
- 204. Vanhanen J., Parkkinen S., Leppanen V. P., Jaaskelainen T., Parkkinen J.P.S. Grating formation in 13-demethyl bacteriorhodopsin film // Optical Review, 2001, V.8 № 5, P. 368-372.
- 205. Mironova, E.V.; Lukin, A.Yu.; Shevyakov, S.V.; Alexeeva, S.G.; Shvets, V.I.; Demina, O.V.; Khodonov, A.A.; Khitrina, L.V. Synthesis and properties of bacteriorhodopsin analogs containing electron-density labels in the chromophore moiety // Biochem. (Moscow), 2001, V. 66 № 11, P. 1323-1333. Миронова Е.В., Лукин А.Ю., Шевяков С.В., Алексеева С.Г., Швец В.И., Демина О.В., Ходонов А.А., Хитрина Л.В. Синтез и свойства аналогов бактериородопсина, содержащих электронно-плотные метки в хромофоре. // Биохимия, 2001, Т. 56 № 11, С. 1638-1648.
- 206. Mironova E.V., Leont'eva S.V., Shevyakov S.V., Alexeeva S.G., Shvets V.I., Demina O.V., Krasnokutskaya I.S., Finkel'shtein E.I., Khodonov A.A. A Convenient Synthesis of Retinal Derivatives with Modified Trimethylcyclohexene Ring // Russ. J. Bioorganic Chem., 2002, V. 28 № 6, P. 487–493. Миронова Е.В., Леонтьева С.В., Шевяков С.В., Алексеева С.Г., Швец В.И., Демина О.В., Краснокутская И.С., Финкельштейн Е.И., Ходонов А.А. Удобный способ получения производных ретиналя, модифицированных по триметилциклогексеновому кольцу // Биоорган. химия, 2002, Т. 28 № 6, С. 535–542.
- 207. Mironova E.V. Biosynthetical preparation of bacteriorhopsin. Ph.D. thesis, 2002, Moscow: МІТКНТ Миронова Е.В. Биосинтетическое получение аналогов бактериородопсина. Дис. ... канд. хим. наук. М.: МИТХТ. 2002.
- 208. Lensu L., Frydrych M., Parkkinen J., Parkkinen S., Jaaskelainen T. Photoelectric properties of bacteriorhodopsin analogs for color-sensitive optoelectronic devices // Optical Materials, 2004, V. 27 № 1, P. 57–62
- 209. Lukin A.Yu. Synthesis of polyenic crowned compounds. Ph.D. thesis, 2004, Moscow: МІТКНТ Лукин А.Ю. Синтез полиеновых краунсодержащих соединений Дис. ... канд. хим. наук. М.: МИТХТ. 2004.
- 210. Demina O.V., Varfolomeev S.D., Lukin A.Yu., Laptev A.V., Shvets V.I., Khitrina L.V., Gromov S.P., Vedernikov A.I., Barachevsky V.A., Strokach Yu.P., Alfimov M.V., Lugtenburg J., Khodonov A.A. Investigation of the Spectral Properties of the Crowned Retinals and Bacteriorhodopsin Analogs // Mol. Cryst. Liq. Cryst., 2005, V. 431, P. 209-214.
- 211. Karnaukhova E., Vasileiou C., Wang A., Berova N., Nakanishi K., Borhan B. Circular dichroism of heterochromophoric and partially regenerated purple membrane: search for exciton coupling // Chirality, 2006, V.18 №2, P. 72-83.
- 212. Belikov N., Lukin A., Laptev A., Shvets V., Barachevsky V., Strokach Yu., Valova T., Krayushkin M., Demina O., Varfolomeev S., Khodonov A. Photochromic Behavior of Retinal Analogs. // J. Photochem. Photobiol. A, 2008, V. 196, № 2-3, P. 262-267.
- 213. Laptev A.V. Synthesis of retinal analogs from spiropyran family and study its interaction with bacterioopsin. Ph.D. thesis, 2008, Moscow: MITKHT Лаптев А.В. Синтез аналогов ретиналя ряда спиропиранов и их взаимодействие с бактериоопсином Дис. ... канд. хим. наук. М.: МИТХТ. 2008.
- 214. Laptev A.V., Belikov N.E., Lukin A.Yu., Barachevsky V.A., Alfimov M.V., Demina O.V., Varfolomeev S.D., Shvets V.I., Khodonov A.A. Spiropyran Analogs of Retinal: Synthesis and Study of Their Photochromic Properties // High Energy Chem., 2008, V. 42 №7, P. 601–603. Лаптев А.В., Беликов Н.Е., Лукин А.Ю., Барачевский В.А., Алфимов М.В., Демина О.В., Варфоломеев С.Д., Швец В.И., Ходонов А.А. Спиропирановые аналоги ретиналя: синтез и изучение их фотохромных свойств. // Химия высоких энергий, 2008, Т. 42 № 4 (прил.), С. 102-104.
- 215. Laptev A.V., Belikov N.E., Lukin A.Yu., Strokach Yu.P., Barachevsky V.A., Alfimov M.V., Demina O.V., Shvets V.I., Skladnev D.A., Khodonov A.A. Synthesis of Spiropyran Analogues of Retinal and Study of Their Interaction with Bacterioopsin from *Halobacterium salinarum* // Rus. J. Bioorganic Chem., 2008, V. 34 № 2, P. 252–260. Лаптев А.В., Беликов Н.Е., Лукин А.Ю., Строкач Ю.П., Барачевский В.А., Алфимов М.В., Демина О.В., Швец В.И., Складнев Д.А., Ходонов А.А. Синтез спиропирановых аналогов ретиналя и изучение их взаимодействия с бактериоопсином из Н. salinarum. // Биоорганическая химия, 2008, Т. 34 № 2, С. 276–284.
- 216. Khitrina L.V., Mironova E.V., Khodonov A.A. Bacteriorhodopsins containing modified chromophores: a study on the wild type and D96N mutant of Halobacterium salinarum Biologicheskie Membrany, 2009, V. 26 №3, 194-200. Хитрина Л.В., Миронова Е.В., Ходонов А.А. Исследование бактериородопсинов *Halobacterium salinarum* дикого типа и мутанта D96N с модифицированными хромофорами // Биол. мембраны, 2009, Т. 26 № 3, С. 40-46.
- 217. Laptev A., Lukin A., Belikov N., Fomin M., Zvezdin K., Demina O., Barachevsky V., Varfolomeev S., Shvets V., Khodonov A. Polyenic spirobenzopyrans: Synthesis and study of photochromic properties. // J. Photochem. Photobiol. A, 2011, V. 222 №1, P. 16-24.
- 218. Belikov N.E. Design of new photochromic labels preparation methods and study their properties. Ph.D. thesis, 2011, Moscow: MITKHT.

- 219. Khitrina L.V. On the Photocycle of 4-Ketobacteriorhodopsin // Biochem. (Moscow), 2012, V. 77 №9, Р. 1008-1010. Хитрина Л.В. О фотоцикле 4-кетобактериородопсина // Биохимия, 2012, Т. 77 вып. 9, С. 1216 1218.
- 220. Khitrina, L.V. 4-Ketobacteriorhodopsin and features of its photocycle. Vestnik Sankt-Peterburgskogo Universiteta, Seriya 3: Biologiya, 2012, №4, P. 82-92.
- 221. Levin P.P., Tatikolov A.S., Laptev A.V., Lukin A.Yu., Belikov N.E., Demina O.V., Khodonov A.A., Shvets V.I., Varfolomeev S.D. The investigation of the intermediates of spiropyran retinal analogs by laser flash photolysis techniques with different excitation wavelengths. // J. Photochem. Photobiol. A, 2012, V. 231 №1, P. 41-44.
- 222. Brown L.S., Druzhko A.B., Lukashev E.P., Chamorovskii S.K. Investigation of the photochemical cycle of a bacteriorhodopsin analog containing the 4-keto-retinal residue // Biologicheskie Membrany, 1991, V. 8 №5, P. 460-467.
- 223. Brown L.S., Druzhko A.B., Chamorovsky S.K. Biophysics (Rus), 1992, V. 37 № 1, Р. 79-84. Броун Л.С., Дружко А.Б., Чаморовский С.К. Световая адаптация аналога бактериородопсина с 4-кеторетиналем. // Биофизика, 1992, Т. 37 № 1, С. 79 84.
- 224. Lukashev E.P., Druzhko A.B., Kononenko A.A. // Biophysics (Rus), 1992, V. 37 № 1, Р. 86-90. Лукашев Е.П., Дружко А.Б., Кононенко А.А. Электроиндуцированный батохромный сдвиг полосы поглощения 4-кето-бактериородопсина в пленках на желатиновой основе. // Биофизика, 1992, Т. 37 № 1, С. 86–90.
- 225. Druzhko A.B., Chamorovsky S.K., Lukashev E.P., Kononenko A.A., Vsevolodov N.N.
 4-Keto-bacteriorhodopsin films as a promising photochromic and electrochromic biological material // BioSystems, 1995, V. 35 №2-3, P.129-132.
- 226. Druzhko A.B., Chamorovsky S.K. The cycle of photochromic reactions of a bacteriorhodopsin analog with 4-keto-retinal // BioSystems, 1995, V. 35 № 2-3, P. 133-136.
- 227. De Lera A.R., Iglesias B., Rodriguez J., Alvarez R., Lopez S., Villamuva X., Padros E. Experimental and theoretical analysis of the steric tolerance of binding site of bacterioopsin with the use of side chain methyl-shifted retinal analogs. // J. Amer. Chem. Soc., 1995, V. 117 № 31, P. 8220 8231.
- 228. Druzhko A.B., Vanderah D.J., Robertson B., Weetall H.H. An azulenic bacteriorhodopsin analog has photoinduced activity // Photochem. Photobiol., 1996, V. 64 №5, P. 867-869.
- 229. Francesch A., Alvarez R., Lopez S., de Lera A.R. Synthesis of Retinals Fluorinated at Odd-Numbered Side-Chain Positions and of the Corresponding Fluorobacteriorhodopsins // J. Org. Chem., 1997, V. 62, №2, P. 310-319.
- 230. Druzhko A.B., Weetall H.H. Photoinduced transformation of wild-type and D96Nmutant 4-keto-bacteriorhodopsin gelatin films // Thin Solid Films, 1997, V. 293 №1-2, P. 281-284.
- 231. Kolodner P., Lukashev E.P., Ching Y.-C., Druzhko A.B. Electric-field and photochemical effects in D85N mutant bacteriorhodopsin substituted with 4-keto-retinal // Thin Solid Films, 1997, V. 302 № 1-2, P. 231-234.
- 232. Weetall H.H., Druzhko A.B., Samuelson L.A., de Lera A.R., Alvarez R. Optical and electrical properties of bacteriorhodopsin Langmuir-Blodgett films: II. D96N mutant and its 4-keto and 9-demethyl retinal analogs. // Bioelectrochem. Bioenergetics, 1997, V. 44, P. 37-43
- 233. Druzhko A.B., Robertson B., Alvarez R., de Lera A.R., Weetall H.H. Phototransformation and proton pumping activity of the 14-fluoro bacteriorhodopsin derivatives // Biochim. Biophys. Acta, 1998, V. 1371 №2, P. 371–381.
- 234. Weetall H.H., Druzhko A.B., de Lera A.R., Alvarez R., Robertson B. Measurement of proton release and uptake by analogs of bacteriorhodopsin // Bioelectrochemistry, 2000, V. 51 № 1, P. 27–33.

- 235. Druzhko A.B., Shakhbazian V.Y., Alvarez R., de Lera A.R., Weetall H.H. Photoinduced transformation of 14-F-bacteriorhodopsin gelatin films based on both wild type and D96N mutant // BioSystems, 2001, V. 59 №1, P. 53-60.
- 236. Lopez S., Rodriguez V., Montenegro J., Saa C., Alvarez R., Lopez C.S., de Lera A.R., Simon R., Lazarova T., Padros E. Synthesis of N-heteroaryl retinals and their artificial bacteriorhodopsins. // Chembiochem, 2005, V. 6, P. 2078–2087.
- 237. Druzhko A.B., Pirutin S.K., de Lera A.R., Alvarez R., Weetall H.H. Effect of dehydration on photoinduced transformation in gelatin films made with 14-fluoro bacteriorhodopsin derivatives // Appl. Biochem. Biotechnol., 2005, V. 120 №2, P. 121-132.
- 238. Korchemskaya E., Burykin N., de Lera A., Alvarez R., Pirutin S., Druzhko A 14-Fluorobacteriorhodopsin gelatin films for dynamic holography recording. // Photochem. Photobiol., 2005, V. 81 P. 920-923.
- 239. Druzhko, A.B., Alvarez R., De Lera A.R. Photochromic polymer films based on a 14-F bacteriorhodopsin derivative // J. Biomaterials Sci., 2008, V. 19 № 12, P. 1585-1595.
- 240. Simon-Vazquez R., Dominguez M., Lorenz-Fonfria V.A., Alvarez S., Bourdelande J.-L., de Lera A.R., Padros E., Peralvarez-Marin A. Probing a polar cluster in the retinal binding pocket of bacteriorhodopsin by a chemical design approach // PLoS One, 2012, V. 7 №8, e42447.
- 241. Natsias K., Hopf H. Retinoide-II: Darstellung von 13-methoxyretinal. // Tetrahedron Lett., 1982, V. 23 № 36, P. 3673 3676.
- 242. Hopf H., Natsias K. Retinoide-XI: Darstellung von 13-, 9- und 11-methoxyretinoiden. // Liebigs Ann. Chem., 1988, № 7, S. 705 715.
- 243. Sonnewald U., Seltser S., Robison A.E., Packer L. [Mesityl]bacteriorhodopsin. The properties of an analogue of the purple membrane containing [mesityl]retinal as the chromophore. // Photochem. Photobiol., 1985, V. 41 № 3, P. 303 307.
- 244. Sonnewald U., Seltser S. Synthesis of 3,7-dimethyl-9-(4-(3H-diazirinyl)-2,6dimethylphenyl-2E,4E,6E,8E-nonatetraenal-1-³H, a photoaffinity labeling analogue of alltrans-retinal. // J. Label. Compounds Radiopharm., 1987, V. 24 № 7, P. 787 – 795.
- 245. Birnbaum D., Seltzer S. The secondary b-deuterium isotope effect in dark adaptation of bacteriorhodopsin containing retinal-20,20,20-d₃ // Bioorganic Chemistry, 1991, V. 19 №1, P. 18-28.
- 246. Birnbaum D., Seltzer S. A highly reactive heteroatom analog of retinal and its interaction with bacteriorhodopsin. // Photochem. Photobiol., 1992, V. 55 № 5, P. 745 752.
- 247. Seltzer S. 13-Acetoxy-13-desmethylretinal: Synthesis, Incorporation into Bacteriorhodopsin, and Its Apparent Inactivating Effect // J. Amer. Chem. Soc., 1994, V. 116 №20, P. 9383-9384.
- 248. Seltzer S. Synhesis of 13-acetoxy-13-desmethylretinal, its pigment formation with bacteriopsin, and apparent dark-inactivating effect on the pigment. // J. Org. Chem., 1995, V. 60 № 5, P. 1189 1194.
- 249. Seltzer S. 13-Acetoxy-13-desmethylretinal-14-³H: synthesis and interaction with bacterioopsin // Photochem. Photobiol., 1999, V. 70 №4, P. 680-685.
- 250. Marcus M.A., Lewis A., Racker E., Crespi H. Physiological and structural investigations of bacteriorhodopsin analogs. // Biochem. Biophys. Res. Commun., 1977, V. 78 № 2, P. 669 675.
- 251. Bayley H., Radhakrishnan R., Huang K.S., Khorana H.G. Light-driven proton translocation by bacteriorhodopsin reconstituted with the phenyl analog of retinal. // J. Biol. Chem., 1981, V. 256 № 8, P. 3797 3801.
- 252. Huang K.S., Radhakrishnan R., Bayley H., Khorana H.G. Orientation of retinal in bacteriorhodopsin as studied by crosslinking using a photosensitive analog of retinal. // J. Biol. Chem., 1982, V. 257 № 22, P. 13616 13623.

- 253. Bhattacharya S., Marti T., Otto H., Heyn M.P., Khorana H.G. A bacteriorhodopsin analog reconstituted with a nonisomerizable 13-trans retinal derivative displays light insensitivity. // J. Biol. Chem., 1992, V. 267 № 10, P. 6757 6762.
- 254. Akhtar M., Jallo L., Johnson A.H. Interaction of a conformationally rigid analogue of retinal with bacterioopsin. // J. Chem. Soc., Chem. Commun., 1982, № 1, P. 44 46.
- 255. Tokunaga F., Govindjee R., Ebrey T.G., Crouch R. Synthetic pigment analogues of the purple membrane proteins. // Biophys. J., 1977, V. 19, P. 191 198.
- 256. Tokunaga F., Ebrey T.G. The blue membrane: the 3-dehydroretinal-based artificial pigment of purple membrane. // Biochem., 1978, V. 17 № 10, P. 1915 1922.
- 257. Iwasa T., Tokunaga F., Ebrey T.G., Yoshizawa T. The photoreactions and photosensitivity of 3,4-dehydro-bacteriorhodopsin at low temperatures. // Photochem. Photobiol., 1981, V. 33 № 4, P. 547 557.
- 258. Sato M., Takahashi T., Tokunaga F., Kono S., Murano K., Tsujimoto K., Sagawa T. Xray photoelectron spectroscopy of fluorophenyl retinal and its bacteriorhodopsin analogue. // J. Phys. Soc. Japan, 1982, V. 51 № 8, P. 2383 – 2384.
- 259. Iwasa T., Takao M., Yamada M., Tsujimoto K., Tokunaga F. Properties of an analogue pigment of bacteriorhodopsin synthesized with naphtylretinal. // Biochem., 1984, V. 23 № 5, P. 838-843.
- 260. Takahashi M., Takahashi T., Tokunaga F., Murano K., Tsujimoto K., Sagawa T. X-ray photoelectron spectroscopy (XPS) of bacteriorhodopsin analogs synthesized from fluorophenyl retinals // J. Phys. Soc. Japan, 1984, V. 53 №4, P. 1557-1564.
- 261. Takahashi M., Takahashi T., Murano K., Ogawa H., Tokunaga F. Direct detection of external charge in bacteriorhodopsin by x-ray photoelectron spectroscopy // J. Phys. Soc. Japan, 1984, V. 53 № 10, P. 3321-3323.
- 262. Iwasa T., Takao M., Tsujimoto K., Tokunaga F. Photochemical properties of naphthylbacteriorhodopsin differing in their protein-chromophore interactions. // Biochem., 1988, V. 27 №7, P. 2416-2419.
- 263. Iwasa T., Ito M., Tokunaga F. A novel bacteriorhodopsin analog with conformationally 6-s-cis fixed retinals // Photochem. Photobiol., 1992, V. 56 № 6, P. 921-927.
- 264. Taguchi T., Hosoda A., Kobayashi Y. Synthesis of (7E,9E,11E,13E)-18,18,18trifluororetinal (all-trans-5-trifluoromethylretinal). // Tetrahedron Lett., 1989, V. 26 № 50, P. 6209 - 6212.
- 265. Hiraki K., Hamanaka T., Yoshihara K., Kito Y. Bacteriorhodopsin analogs regenerated with enantiomers of 5,6-epoxyretinals. // Biochim. Biophys. Acta, 1987, V. 891 № 2, P. 177 193.
- 266. Yamazaki Y., Sasaki J., Hatanaka M., Kandori H., Maeda A., Needleman R., Shinada T., Yoshihara K; Brown L.S., Lanyi J.K. Interaction of tryptophan-182 with the retinal 9methyl group in the L intermediate of bacteriorhodopsin // Biochem., 1995, V. 34 №2, P. 577-582.
- 267. Shinada T., Sekiya N., Bojkova N., Yoshihara K. Stereocontrolled functionalization at the C-9 of retinal. Stereoselective synthesis of 9-trans-9-fluororetinal. // Synlett., 1995, № 12, P. 1247 1248.
- 268. Hiraki K., Hamanaka T., Zheng X.-G., Shinada T., Kim J.-M., Yoshihara K., Kito Y. Bacteriorhodopsin analog regenerated with 13-desmethyl-13-iodoretinal // Biophys. J., 2002, V. 83 №6, P. 3460-3469.
- 269. Singh A.K. Some recent developments in the photochemistry and chemical modification of bacteriorhodopsin. // J. Scientific Industrial Res., 1982, V. 41 №11, P. 665 673.
- 270. Singh A.K., Roy M. Bacteriorhodopsin analog from anthryl chromophores // Canadian J. Chemistry, 1990, V. 68 №3, P. 383-389.
- 271. Singh A.K., Roy M. Fluorescence studies on anthryl bacteriorhodopsins // J. Photochem. Photobiol., B, 1991, V. 8 №3, P. 325-335.

- 272. Singh A.K., Das J., Majumdar N. Novel Bacteriorhodopsin Analogs Based on Azo Chromophores // J. Amer. Chem. Soc., 1996, V. 118 № 26, P. 6185-6191.
- 273. Singh A.K., Manjula D. Bacteriorhodopsin analogs from diphenylpolyene chromophores // Photochem. Photobiol., 2003, V. 78, № 5, P. 503-510.
- 274. Singh A.K., Hota P.K. Development of Bacteriorhodopsin Analogues and Studies of Charge Separated Excited States in the Photoprocesses of Linear Polyenes. // Photochem. Photobiol., 2007, V. 83, P. 50–62.
- 275. Hota P.K., Singh A.K. Bacteriorhodopsin analogue from indolic chromophores // Letters in Organic Chemistry, 2007, V. 4 №4, P. 300-305.
- 276. Kalai T., Lazsanyi N., Gulyas-Fekete G., Hideg K. Synthesis of new paramagnetic retinal analogues // Monatsh. Chem., 2014, V. 145, P. 651–656.
- 277. Gillespie, N.B.; Ren, L., Ramos, L., Daniell, H., Dews, D., Utzat, K.A., Stuart, J.A.; Buck, C.H.; Birge, R.R. Characterization and Photochemistry of 13-Desmethyl Bacteriorhodopsin // J. Phys. Chem. B, 2005, V. 109 №33, P. 16142-16152.
- 278. Terentis A.C., Ujj L., Abramczyk H., Atkinson G.H. Primary events in the bacteriorhodopsin photocycle: torsional vibrational dephasing in the first excited electronic state // Chem. Physics, 2005, V. 313 № 1-3, P. 51-62.
- 279. Terentis A.C., Zhou Y., Atkinson G.H., Ujj L. Picosecond time-resolved coherent anti-Stokes Raman spectroscopy of the artificial bacteriorhodopsin pigment, BR6.11 // J. Phys. Chem. A, 2003, V. 107 №49, P. 10787-10797.
- 280. Atkinson G.H., Ujj L., Zhou Y. Vibrational Spectrum of the J-625 Intermediate in the Room Temperature Bacteriorhodopsin Photocycle // J. Phys. Chem. A, 2000, V. 104 №18, P. 4130-4139.
- 281. Hoischen D., Steinmuller S., Buss V., Gartner W., Martin H.-D. Hemicyanine chromophore in bacteriorhodopsin. Formation of extremely bathochromic pigments. // Abstracts of VIIth International Conference on Retinal Proteins. - Zichron-Yaacov, Israel. 1996. P. 66.
- 282. De Vico L., Page C.S., Garavelli M., Bernardi F., Basosi R., Olivucci M. Reaction path analysis of the "tunable" photoisomerization selectivity of free and locked retinal chromophores // J. Amer. Chem. Soc., 2002, V. 124 №15, P. 4124-4134.
- 283. Lukashev E.P., Pronskaya N.A. Photochemical Properties of a Bacteriorhodopsin Analog with 13-Demethyl-13-Trifluoromethyl Retinal // Biophysics, 2006, V. 51 №3, P. 391–398. Лукашев Е.П., Пронская Н.А. Фотохимические свойства аналога бактериородопсина с 13-дезметил-13-трифторметилретиналем // Биофизика, 2006, Т. 51 № 3, С. 446–453.
- 284. Hamanaka T., Hiraki K., Zheng X.-G., Shinada T., Yoshihara K., Kito Y. Bacteriorhodopsin analogues reconstituted with halogenated retinals // Seibutsu Butsuri, 2001, V. 41 (suppl), S62, 1P120.
- 285. Bryl K., Yoshihara K. The role of retinal in the long-range protein-lipid interactions in bacteriorhodopsin-phosphatidylcholine vesicles. // Eur. Biophys. J., 2001, V. 29 №8, P. 628–640.
- 286. Bryl K., Yoshihara K. Two processes lead to a stable all-trans and 13-cis isomer equilibrium in dark-adapted bacteriorhodopsin; effect of high pressure on bacteriorhodopsin, bacteriorhodopsin mutant D96N and fluoro-bacteriorhodopsin analogues // Eur. Biophys. J., 2002, V. 31 №7, P. 539-548.
- 287. Haacke S., Schenkl S., Vinzani S., Chergui M. Femtosecond and Picosecond Fluorescence of Native Bacteriorhodopsin and a Nonisomerizing Analog // Biopolymers, 2002, V. 67 №4-5, P. 306–309.
- 288. Savedra R.M.L., Pinto M.F.S., Trsica M. Quantum chemical study of electronic and structural properties of retinal and some aromatic analogs // J. Chem. Phys., 2006, V. 125, 144901.

- 289. Lasogga L., Rettig W., Otto H., Wallat I., Bricks J. Model Systems for the Investigation of the Opsin Shift in Bacteriorhodopsin // J. Phys. Chem. A, 2010, V. 114 №5, P. 2179–2188.
- 290. Lopez C.S., Faza O.N., Estevez S.L., de Lera A.R. Computation of Vertical Excitation Energies of Retinal and Analogs: Scope and Limitations // J. Comput. Chem., 2006, V. 27 №1, P. 116-123.
- 291. Ernst O.P., Lodowski D.T., Elstner M., Hegemann P., Brown L.S., Kandori H. Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms // Chem. Rev., 2014, V. 114 №1, P. 126–163.
- 292. Gushchin I., Gordeliy V. Membrane Protein Complexes: Structure and Function, // In: Subcellular Biochemistry, V. 87, Ch.2, P. 19-56 (Harris J.R., Boekema E. J. eds.), 2018.
- 293. Kandori H. Retinal Proteins: Photochemistry and Optogenetics // Bull. Chem. Soc. Japan, 2020, V. 93 №1, P. 76–85.
- 294. Kandori H. Biophysics of rhodopsins and optogenetics // Biophys. Rev., 2020, doi: 10.1007/s12551-020-00645-0.
- 295. Bratanov D., Kovalev K., Machtens J.-P., Astashkin R., Chizhov I., Soloviov D., Volkov D., Polovinkin V., Zabelskii D., Mager T., Gushchin I., Rokitskaya T., Antonenko Y., Alekseev A., Shevchenko V., Yutin N., Rosselli R., Baeken C., Borshchevskiy V., Bourenkov G., Popov A., Balandin T., Büldt G., Manstein D.J., Rodriguez-Valera F., Fahlke C., Bamberg E., Koonin E., Gordeliy V.Unique structure and function of viral rhodopsins // Nature Comm., 2019, V. 10, 4939.
- 296. Li Y.-T., Tian Y., Tian H., Tu T., Gou G.-Y., Wang Q., Qiao Y.-C., Yang Y., Tian-Ling Ren T.-L. A Review on Bacteriorhodopsin-Based Bioelectronic Devices // Sensors, 2018, V. 18 №5, P. E1368.
- 297. Brack T.L., Delaney J.K., Atkinson G.H., Albeck A., Sheves M., Ottolenghi M. Picosecond time-resolved absorption and fluorescence dynamics in the artificial bacteriorhodopsin pigment BR6.11 // Biophys. J., 1993, V. 65 № 2, P. 964-972.