На правах рукописи

furt

ПЕРОВА АЛЕКСАНДРА НИКОЛАЕВНА

ВЛИЯНИЕ МИКРОКРИСТАЛЛИЧЕСКОЙ ЦЕЛЛЮЛОЗЫ НА ТЕРМИЧЕСКУЮ ДЕСТРУКЦИЮ ПОЛИЛАКТИДА И ПОЛИЭТИЛЕНА

1.4.7. Высокомолекулярные соединения

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата химических наук

Москва – 2024

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте биохимической физики им. Н.М. Эмануэля Российской академии наук (ИБХФ РАН), г. Москва.

Научный руководитель:	Ломакин Сергей Модестович, кандидат химических наук		
Официальные оппоненты:	Аскадский Андрей Александрович, доктор химических наук, заслуженный деятель науки Российской Федерации, профессор, главный научный сотрудник лаборатории полимерных материалов Федерального государственного бюджетного учреждения науки Института элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН)		
	Акопова Татьяна Анатольевна, доктор химических наук, ведущий научный сотрудник, заведующий лабораторией твердофазных химических реакций Федерального государственного бюджетного учреждения науки Института синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук (ИСПМ РАН)		
Ведущая организация:	Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский химико-технологический университет имени Д.И. Менделеева» (РХТУ им. Д.И. Менделеева)		

Защита состоится «____» ____ 2024 г. в ____ ч. ____ минут на заседании Диссертационного совета 24.1.038.01 при Федеральном государственном бюджетном учреждении науки Институте биохимической физики им. Н.М. Эмануэля Российской академии наук по адресу: 119334, г. Москва, ул. Косыгина, д. 4.

С диссертацией можно ознакомиться в библиотеке Федерального государственного бюджетного учреждения науки Федерального исследовательского центра химической физики им. Н.Н. Семенова Российской академии наук по адресу: 119991, г. Москва, Ленинский проспект, д. 38 и на веб-сайте:

https://biochemphysics.ru/ru/odissertacii/Диссертация%20Перовой%20Александры%20 Николаевны/

Автореферат разослан «____» ____ 2024 г.

Ученый секретарь Диссертационного совета 24.1.038.01, кандидат химических наук

lelley

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. В течение последних десятилетий наблюдается значительный рост объемов потребления полимерных материалов, которые нашли широкое применение в упаковочной промышленности, медицине, автомобиле-, судо- и авиастроении, сельском хозяйстве, электронике и т.д. Данная тенденция привела к закономерному увеличению количества полимерных отходов: их производство в мире составляет 3 500 000 тонн в год и может достигнуть 25 000 000 тонн к 2040 году [1]. Полимерные отходы оказывают негативное воздействие на окружающую среду, поэтому их утилизация в настоящее время представляет собой актуальную задачу современной химической промышленности.

Существуют несколько подходов к утилизации отходов полимерной индустрии, среди которых можно отметить механическую, химическую и термическую (пиролитическую) переработку.

В качестве перспективного метода переработки широко распространенных в упаковочной промышленности материалов – полилактида (ПЛ) и полиэтилена высокой плотности (ПЭВП) в настоящей диссертации рассматривается пиролиз, который позволяет получить ценные химические вещества. Для регулирования выхода целевых продуктов в матрицы ПЛ и ПЭВП была включена микрокристаллическая целлюлоза (МКЦ), являющаяся наиболее распространенным представителем добавок растительного происхождения, которую выделяют из хлопка, льна, древесины и т.д. Представление о закономерностях влияния МКЦ на механизмы термической деструкции ПЛ и ПЭВП позволило разработать подход к оптимизации температурновременных условий для целенаправленного получения летучих продуктов пиролиза.

Степень разработанности темы. Изучению пиролиза композиций ПЛ с целлюлозой посвящено множество научных трудов. Известно, что термическая деструкция ПЛ и его композиций с целлюлозой протекает по сложному механизму, включающему внутри- и межмолекулярные реакции переэтерификации, радикальные и нерадикальные реакции разложения, цис-элиминирование и деполимеризацию. Однако в научной литературе не была представлена исчерпывающая информация о влиянии целлюлозы на состав летучих продуктов пиролиза ПЛ.

В рамках данной диссертационной работы были установлены закономерности влияния МКЦ на состав летучих продуктов термического разложения ПЛ и ПЭВП и, соответственно, на механизмы их пиролиза. Так как исследование композиций ПЭВП/МКЦ подтвердило результаты, опубликованные ранее в литературе, большее внимание в настоящей работе уделяется изучению влияния МКЦ на пиролиз ПЛ.

Цель исследования. Целью работы является установление закономерностей влияния МКЦ на термическую деструкцию ПЛ и ПЭВП.

Задачи исследования:

– введение МКЦ в полиэфирную и полиолефиновую матрицы (ПЛ и ПЭВП соответственно);

определение теплофизических свойств композиций ПЛ с МКЦ;

исследование термической и термоокислительной стабильности композиций ПЛ/МКЦ и ПЭВП/МКЦ;

– изучение динамики изменения состава летучих продуктов пиролиза ПЛ и ПЭВП в зависимости от содержания МКЦ в композициях;

– подбор математических моделей для описания кинетики термической деструкции ПЛ/МКЦ и термоокислительного разложения ПЭВП/МКЦ;

 расчет кинетических параметров (энергии активации, предэкспоненциального множителя и порядка реакции) термической деструкции ПЛ/МКЦ и термоокислительного разложения ПЭВП/МКЦ с использованием выбранных кинетических моделей.

Научная новизна работы. Ранее утверждалось, что при пиролизе ПЛ не могут образовываться пятичленные циклические продукты (кетоны), поскольку они подвергаются распаду на спиртовые и кислотные фрагменты. В данном исследовании в составе летучих продуктов термической деструкции ПЛ и ПЛ/МКЦ впервые обнаружены пятичленные циклические продукты (цис- и транс- 1,3-диметилдиоксаланпоказано влияние МКЦ и температуры пиролиза на 4-оны) И изменение количественного состава летучих продуктов пиролиза ПЛ и ПЛ/МКЦ. Известно, что полезны хиральные 1,3-диоксалан-4-оны В стереоселективном синтезе таких соединений, как (2S,5R)-2-трет-бутил-5-метил-1,3-диоксалан-4-он, (2S,5R)-5-бутил-третбутил-5-метил-1,3-диоксалан-4-он, (2S,5S)-2-трет-бутил-5-фенил-1,3-диоксалан-4-он, (2\$,5\$)-2-трет-бутил-5-(1'-(4-метоксифенил)-2'-нитроэтил)-5-фенил-1,3-диоксалан-4-он и т.д. [2; 3]. Также 1,3-диоксалан-4-оны можно рассматривать в качестве перспективных мономеров для алифатических полиэфиров (поли-α-гидроксикислот и полимолочной кислоты) [4-6].

Теоретическая и практическая значимость работы. Результаты исследования ПЛ/МКЦ показали образование состава летучих продуктов пиролиза ПЛ и преимущественно лактидов и их олигомеров и диметилдиоксаланонов. С учетом полученных данных предложена кинетическая модель термической деструкции ПЛ и его композиции с МКЦ, представляющая собой две параллельно протекающие реакции первого порядка, приводящие к образованию пятичленных циклических соединений – цис- и транс-1,3-диметилдиоксалан-4-онов и шестичленных циклических продуктов – лактидов и их олигомеров (три-, тетра- и пентамеров). На основе предложенной кинетической модели термической деструкции композиций ПЛ/МКЦ осуществлен расчет (прогнозирование) суммарных концентраций основных продуктов пиролиза композиций ПЛ/МКЦ (диметилдиоксаланонов и лактидов И их циклических олигомеров) от времени в температурном диапазоне 330-600 °C.

Результаты проведенного исследования могут быть полезны при поиске оптимальных условий утилизации отходов ПЛ и ПЭВП с использованием пиролиза. Знание факторов, вызывающих смещение равновесия в сторону образования целевых продуктов, позволяет рассмотреть пиролиз отработанных полимеров, в частности, ПЛ, в качестве одного из возможных способов их рециркуляции.

4

Методология и методы исследования. Для идентификации взаимодействия ПЛ с МКЦ в композициях была применена инфракрасная (ИК) спектроскопия. Термические свойства и термическая деструкция композиций ПЛ/МКЦ и ПЭВП/МКЦ были изучены с использованием современных методов анализа: термогравиметрического анализа (ТГА), дифференциальной сканирующей калориметрии (ДСК), пиролитической хромато-масс-спектрометрии (ХМС) и кинетического анализа данных ТГА, включающего изоконверсионные (безмодельные) и модельные методы.

Положения, выносимые на защиту:

1. Установлено, что увеличение концентрации МКЦ в композициях с ПЛ приводит к снижению термической и термоокислительной стабильности ПЛ. В композициях с ПЭВП МКЦ практически не влияет на термическую стабильность ПЭВП, но повышает термоокислительную стабильность ПЭВП;

2. Определены закономерности влияния МКЦ на состав летучих продуктов термической деструкции ПЛ и ПЭВП. МКЦ в композициях с ПЛ способствует увеличению выхода лактидов и их олигомеров, а в композициях с ПЭВП – росту концентрации легких углеводородных соединений фракции C₈–C₁₇;

3. Обнаружено влияние температурных условий пиролиза на состав продуктов термической деструкции ПЛ: чем выше температура пиролиза, тем больше концентрация шестичленных циклических соединений – лактидов и их циклических олигомеров;

4. Предложена кинетическая модель термического разложения ПЛ и ПЛ/МКЦ и рассчитаны эффективные кинетические параметры термической деструкции ПЛ и композиций ПЛ/МКЦ с использованием предложенной кинетической модели;

5. Рассчитаны эффективные кинетические параметры термоокислительной деструкции композиции ПЭВП/МКЦ с использованием двухстадийной кинетической модели последовательно протекающих реакций.

Личный вклад автора. Изложенные в диссертации результаты исследования получены соискателем самостоятельно или при его непосредственном участии. Соискатель принимал участие в приготовлении образцов, изучении их свойств, осуществлял обработку и анализ термоаналитических данных, совместно с научным руководителем занимался постановкой задач, интерпретацией полученных результатов, формулированием положений и выводов и подготовкой материалов публикаций. Результаты диссертационного исследования были представлены соискателем на конференциях и форумах с международным участием.

Степень достоверности результатов. При проведении экспериментов были использованы современные методы исследования полимеров: ИК-спектроскопия, ТГА, ДСК и пиролитическая ХМС. Достоверность представленных в работе результатов обеспечивалась инструментальной и статистической оценкой погрешности измерений, а также согласованием полученных результатов с литературными данными.

Апробация результатов. Материалы исследований были доложены на XIX Ежегодной молодежной конференции с международным участием ИБХФ РАН-ВУЗЫ «Биохимическая физика» (г. Москва, 2019 г.) и шестом междисциплинарном научном форуме с международным участием «Новые материалы и перспективные технологии» (г. Москва, 2020 г.).

Публикации. По материалам диссертационного исследования опубликовано <u>9</u> печатных работ, включающих <u>5</u> статей в рецензируемых научных изданиях, рекомендованных ВАК, <u>2</u> статьи в журналах, индексируемых в базе Scopus, и тезисы <u>2</u>-х докладов в сборниках трудов научных конференций, входящих в базу РИНЦ.

Структура и объем работы. Диссертация изложена на 123 страницах, содержит 32 рисунка и 19 таблиц. Работа состоит из введения, трех глав (обзор литературы, материалы и методы, результаты и обсуждение), заключения, выводов, списка сокращений и условных обозначений, списка литературы, включающего 280 источников, и приложений.

Сокращения, принятые в работе. ДСК – дифференциальная сканирующая калориметрия; МКЦ – микрокристаллическая целлюлоза; ПЛ – полилактид; ПЛ/МКЦ1, ПЛ/МКЦ5, ПЛ/МКЦ10 – композиции ПЛ, содержащие 1 масс. %, 5 масс. % и 10 масс. % МКЦ соответственно; ПЭ – полиэтилен, ПЭВП – полиэтилен высокой плотности; ПЭВП/МКЦ5, ПЭВП/МКЦ20, ПЭВП/МКЦ50 – композиции ПЭВП, содержащие 5 масс. %, 20 масс. % и 50 масс. % МКЦ соответственно; ТГА – термогравиметрический анализ; ХМС – хромато-масс-спектрометрия; ИК-спектроскопия – инфракрасная спектроскопия.

СОДЕРЖАНИЕ РАБОТЫ

Во **введении** обоснована актуальность темы диссертационного исследования, степень ее разработанности, сформулированы цель и задачи работы, научная новизна, теоретическая и практическая значимость результатов исследования и положения, выносимые на защиту.

<u>ГЛАВА 1. Обзор литературы.</u> Представлена информация о получении, основных свойствах, применении ПЛ, ПЭ и целлюлозы, а также о механизмах их термической деструкции. Приведен обзор литературных данных термогравиметрического анализа композиций ПЛ и ПЭ с целлюлозой и расчетных значений эффективных кинетических параметров их термической деструкции.

<u>ГЛАВА 2. Материалы и методы.</u> Отражены сведения об объектах и методах их исследования. Объектами исследования являются композиции ПЛ/МКЦ и ПЭВП/МКЦ, для изготовления которых использовались ПЛ марки PLA 4042D компании Nature Works, Minnetonka, MN, USA ($M_w = 1.3 \times 10^5$ г/моль, $T_{пл} = 155$ °C), ПЭВП марки 273–83 (ООО «Ставролен», Россия) и МКЦ (фирма «Lachema», Чехия) с размером частиц 20–160 мкм.

Приготовление композиций ПЛ/МКЦ. Для получения композиций ПЛ, содержащих 1, 5 и 10 масс. % МКЦ (ПЛ/МКЦ1, ПЛ/МКЦ5 и ПЛ/МКЦ10 соответственно), исходный полимер ПЛ предварительно растворяли в течение 48 часов в химически чистом дихлорметане CH_2Cl_2 компании «ХИММЕД» (Россия) при температуре (22 ± 1) °С. К полученному раствору добавляли расчетное количество МКЦ с размером частиц 20–160 мкм. Растворенную смесь подвергали сонификации в ультразвуковой бане УЗВ-1,3 (ЗАО «ПКФ «Сапфир», Россия, рабочая частота 35 кГц,

мощность излучателя 50 Вт) в течение 30 мин при температуре (12 ± 2) °С. После этого растворитель удаляли на роторном испарителе, а полученную смесь сушили в термостате электрическом суховоздушном TC-1/20 СПУ (ОАО «Смоленское СКТБ СПУ», Россия) при 55 °С в течение 4 часов (до постоянного веса). В результате получены пленки композиций ПЛ/МКЦ, содержащие 1, 5 и 10 масс. % МКЦ.

Приготовление композиций ПЭВП/МКЦ. Композиции ПЭВП, содержащие 5, 20 и 50 масс. % МКЦ (ПЭВП/МКЦ5, ПЭВП/МКЦ20 и ПЭВП/МКЦ50 соответственно), получены смешением компонентов в двухшнековом лабораторном смесителе с объемом камеры 25 см³ (ФИЦ ХФ РАН) при температуре 170 °C и скорости вращения роторов 30 об/мин в течение 5 мин.

Методы исследования:

– идентификацию образцов ПЛ/МКЦ осуществляли методом спектроскопии нарушенного полного внутреннего отражения (НПВО) в инфракрасной (ИК) области с преобразованием Фурье с использованием ИК-Фурье-спектрометра Bruker Tensor 27 на приставке НПВО ATR PIKE MiraclesTM (PIKE Technologies, Мэдисон, Висконсин, США), оснащенной кристаллом германия (Ge);

 теплофизические характеристики образцов определяли с помощью дифференциальной сканирующей калориметрии (ДСК) на калориметре DSC-204 F1 фирмы NETZSCH (Германия) в инертной атмосфере аргона в двухцикличном динамическом режиме в диапазоне температур 25–200 °С при скорости сканирования 10 °С/мин;

– температуры начала разложения $T_{\text{н.р.}}$, °С и температуры, при которых достигались максимальные скорости разложения $T_{\text{м.с.р.}}$ на различных стадиях термической деструкции образцов, °С, определяли с помощью термогравиметрического анализа (ТГА) на термоаналитических весах TG 209 F1 Iris фирмы NETZSCH (Германия) в инертной среде аргона и на воздухе при нагреве от 20 до 800 °С со скоростями 5, 10 и 20 °С/мин;

подбор математических моделей и расчет эффективных кинетических параметров термической деструкции образцов осуществляли на основе экспериментальных данных TΓA c использованием программного обеспечения NETZSCH Thermokinetics фирмы NETZSCH-Gerätebau GmbH по методу многовариантной нелинейной регрессии;

– пиролиз образцов проводили в проточной пиролитической ячейке, предварительно нагретой до 400 ± 2 °C (для ПЛ и ПЛ/МКЦ) и до 500 ± 2 °C (для ПЛ, ПЭВП и ПЭВП/МКЦ), с зоной нагрева 50 мм. В течение 15 минут осуществляли продув аргона через трубку со скоростью 15 мл/мин, при этом смена газа в зоне нагревания составляла до 40 объемов в минуту. Продукты пиролиза ПЛ и композиций ПЛ/МКЦ конденсировали в охлажденном до 4 °C дихлорметане объемом 0,6 мл, а продукты пиролиза ПЭВП и композиций ПЭВП/МКЦ – в охлажденном до 4 °C н-гексане объемом 1,5 мл;

– исследование летучих продуктов пиролиза образцов проводили с использованием хромато-масс-спектометрии (ХМС) на комплексе приборов,

включающем газовый хроматограф Trace-1310, масс-спектрометрический детектор ISQ фирмы Thermo Fisher Scientisic (США) и систему обработки данных на базе персонального компьютера.

ГЛАВА 3. Результаты и обсуждение

3.1. Исследование полилактида и его композиций

3.1.1. Инфракрасная спектроскопия полилактида и его композиций

На Рисунке 1 представлены ИК-спектры ПЛ, ПЛ/МКЦ5, ПЛ/МКЦ10 и МКЦ.

Рисунок 1 – ИК-спектры ПЛ (1), ПЛ/МКЦ5 (2), ПЛ/МКЦ10 (3) и МКЦ (4) в диапазоне волновых чисел 4000–500 см⁻¹

ИК-спектр ПЛ (№ 1 на Рисунке 1) включает пики, соответствующие маятниковым колебаниям CH₂ при 756 см⁻¹, валентным колебаниям C–C при 870 см⁻¹, валентным колебаниям С-О-С при 1046 см⁻¹, симметричным и асимметричным валентным 1090 см⁻¹ cm^{-1} . колебаниям C-O-C при И при 1132 С-О-валентным колебаниям в С-О-С при 1185 см⁻¹ и 1265 см⁻¹, симметричным СН₃-групп $c M^{-1}$, деформационным колебаниям при 1382 асимметричным деформационным колебаниям CH₃-групп при 1454 см⁻¹, C=O-валентным колебаниям при 1756 см⁻¹ и симметричным валентным колебаниям в группе СН₃ при 2952 см⁻¹ [7; 8].

При сравнении ИК-спектров композиций ПЛ/МКЦ и исходного ПЛ, представленных на Рисунке 1, обнаружено смещение пика C=O с 1756 см⁻¹ (ИК-спектр № 1) до 1754 см⁻¹ (ИК-спектры № 2 и № 3), что, в соответствии с [7; 8], указывает на образование слабых водородных связей между карбонильными группами ПЛ и гидроксильными группами МКЦ.

3.1.2. Дифференциальная сканирующая калориметрия полилактида и его композиций

Количественные характеристики теплофизических параметров ПЛ и его композиций с МКЦ представлены в Таблице 1.

			1 1				
					ΔH_{xk} ,	ΔH_{nn} ,	
Ofmanau	T _c , °C	T _p , °C	T _{xк} , °C	T _{пл} , °C	Дж/г	Дж/г	χ, %
Образец	(±0,1 °C)	(±0,1 °C)	(±0,1 °C)	(±0,1 °C)	(±0,2	(±0,2	(±0,2%)
					Дж/г)	Дж/г)	
1	2	3	4	5	6	7	8
ПЛ	56,6/61,3	-/62,7	114,0/-	163,2/158,0	2,0/-	-30,8/-0,6	30,8/0,65
	42 5/61 1	162 1	/	160.9/159.0	/	21.7/1.1	22.0/1.0
ПЛ/МКЦІ	42,5/01,1	-/03,4	_/_	100,8/158,0	_/_	-31,//-1,1	33,8/1,2
ПЛ/МКЦ5	-/61,1	-/63,3	-/131,8	162,6/159,0	-/0,4	-31,2/-3,5	35,2/3,4
ПЛ/МКЦ10	-/61,1	-/62,9	-/133,5	161,5/158,8	-/1,7	-31,9/-5,9	34,3/4,4
_							

Таблица 1 – Результаты измерений методом ДСК ПЛ и его композиций с МКЦ

Примечания

1 T_c – температура стеклования; T_p – температура релаксации; $T_{x\kappa}$ – температура холодной кристаллизации (кристаллизации в расплаве); T_{nn} – температура плавления; $\Delta H_{x\kappa}$ – энтальпия холодной кристаллизации; ΔH_{nn} – энтальпия плавления; χ – степень кристалличности, $\chi = \frac{\Delta H_{nn} + \Delta H_{x\kappa}}{\Delta H_{nn}^{100}}$, где ΔH_{nn}^{100} – теоретическая величина энтальпии плавления 100 %-го кристаллического полимера; энтальпия плавления кристаллической фазы поли-(L-

100 %-го кристаллического полимера; энтальния плавления кристаллической фазы поли-(Lлактида) ΔH_{nn}^{100} пл = 93,7 Дж/г; удельный тепловой поток от пика плавления (мВт/мг) корректировали на массу полимера в композиции;

2 Через дробь указаны значения величин, полученные при первом и повторном нагревании соответственно.

Анализ данных, представленных в Таблице 1, показал следующее:

– в условиях первого нагревания пленок ПЛ/МКЦ наивысшей степенью кристалличности χ, равной 35,2 %, обладает композиция ПЛ/МКЦ5;

при повторном нагревании пленок ПЛ/МКЦ наблюдается рост значений χ, % при увеличении содержания МКЦ в композиции, что связано с нуклеирующим эффектом частиц МКЦ. При этом заниженные значения T_{пл} и малые величины χ, % при повторном нагревании свидетельствуют в пользу образования в исходных пленках композиций ПЛ/МКЦ преимущественно несовершенных кристаллитов ПЛ;

– можно допустить, что в кристаллизации способны участвовать не только цепи поли(L-лактида), но и те фрагменты поли(L,D-лактидных) цепей, которые обладают меньшей степенью стереорегулярности. При этом в условиях ДСК-испытаний

при повторном нагревании (после первичного отжига при 200 °C) наблюдается резкое падение кристалличности образцов, что свидетельствует в пользу перехода L- в D- (аморфные) ПЛ цепи.

3.1.3. Термогравиметрический анализ полилактида и его композиций

Термическая и термоокислительная стабильность МКЦ, ПЛ и его композиций с МКЦ изучена с использованием метода ТГА в среде аргона и воздуха соответственно при нагревании от 20 °C до 800 °C со скоростью 20 °C/мин. Результаты обработки экспериментальных данных ТГА представлены в Таблице 2.

1	1			
	В сред	е аргона	В среде воздуха	
Образец	Т _{н.р.} , °С (± 1 °С)	Т _{м.с.р.} , °С (± 0,2 °С)	Т _{н.р.} , °С (± 1 °С)	Т _{м.с.р.} , °С (± 0,2 °С)
ПЛ	330	367	328	363/497
ПЛ/МКЦ1	330	367	326	363/484
ПЛ/МКЦ5	319	356	326	362/484
ПЛ/МКЦ10	313	347	325	362/484
МКЦ	285	370	263	344/482

Таблица 2 – Основные характеристики ПЛ и его композиций с МКЦ, полученные методом ТГА при скорости нагревания 20 °С/мин

Примечания:

T_{н.р.} – температура начала разложения; Т_{м.с.р.} – температура точки перегиба, соответствующая максимальной скорости разложения (через дробь указаны значения величин для первой/второй стадии термоокислительной деструкции образцов соответственно).

Данные Таблицы 2 свидетельствуют о том, что МКЦ снижает термическую и термоокислительную стабильность ПЛ, поскольку уменьшается значение $T_{M.c.p.}$ ПЛ. Причем при нагревании образцов в среде воздуха увеличение концентрации МКЦ в композиции с 1 до 10 масс. % не приводит к дальнейшему снижению $T_{M.c.p.}$ ПЛ.

3.1.4. Пиролитическая хромато-масс-спектрометрия полилактида и его композиций

Состав летучих продуктов пиролиза ПЛ и его композиций с МКЦ при 400 °С в инертной среде аргона представлен в Таблице 3.

Таблица 3 – Относительная концентрация летучих продуктов пиролиза ПЛ и его композиций с МКЦ при 400 °C в инертной среде аргона, масс. %

	Образец				
продукты пиролиза	ПЛ	ПЛ/МКЦ1	ПЛ/МКЦ5	ПЛ/МКЦ10	
2,3-пентенон	8,19 ± 0,39	$10,94 \pm 0,83$	$10,\!49 \pm 0,\!56$	$13,11 \pm 0,89$	
Акриловая кислота	$8,35 \pm 0,25$	8,91 ± 0,66	$11,26 \pm 0,81$	$11,\!45 \pm 0,\!34$	
Винилуксусная кислота	$1,36 \pm 0,11$	$0,56 \pm 0,02$	$1,\!08\pm0,\!09$	$0,\!25 \pm 0,\!01$	

Продолжение Таблицы 3

	Образец				
продукты пиролиза	ПЛ	ПЛ/МКЦ1	ПЛ/МКЦ5	ПЛ/МКЦ10	
Цис-1,3-диметилдиоксалан-4-он	45,01 ± 1,45	$18,\!29\pm0,\!61$	$11,96 \pm 0,68$	7,87 ± 0,31	
Транс-1,3-диметилдиоксалан-4-он	$31,77 \pm 1,09$	$13,26 \pm 0,63$	$8,\!57\pm0,\!58$	$6,00 \pm 0,21$	
Мезолактид	$0,\!78\pm0,\!06$	$6{,}35\pm0{,}29$	$7,\!77\pm0,\!67$	$9,31 \pm 0,32$	
Лактид	2,61 ± 0,26	$20,38 \pm 0,58$	$21,35 \pm 0,57$	$20,56 \pm 0,81$	
Сумма тримеров	$0,\!42\pm0,\!02$	2,91 ± 0,15	$3,\!89 \pm 0,\!24$	$5,\!25 \pm 0,\!34$	
Сумма тетрамеров	$0{,}49\pm0{,}02$	$6,\!44 \pm 0,\!39$	$8,\!97\pm0,\!53$	$11,72 \pm 0,34$	
Сумма пентамеров	$0,\!00\pm0,\!00$	2,60 ± 0,11	$3,\!80\pm0,\!27$	$4,\!36\pm0,\!19$	
Неидентифицированные соединения	$1,02 \pm 0,04$	9,36 ± 0,27	$10,88 \pm 0,42$	$10,12 \pm 0,17$	

Данные, отражающие распределение основных продуктов пиролиза ПЛ и ПЛ/МКЦ по молекулярному весу, представлены в Таблице 4.

Таблица 4 – Распределение основных продуктов пиролиза ПЛ и его композиций с МКЦ по молекулярному весу при 400 °С в инертной среде аргона

Voyuoonuuug	Содержание компонентов в пробе, масс. %			
композиция	Диметилдиоксаланоны	Лактиды и их олигомеры		
ПЛ	$76,\!78\pm0,\!36$	$4,30 \pm 0,37$		
ПЛ/МКЦ1	$31,55 \pm 0,03$	$38{,}68\pm0{,}45$		
ПЛ/МКЦ5	$20,53 \pm 0,10$	$45,\!78\pm0,\!67$		
ПЛ/МКЦ10	$13,87 \pm 0,10$	$51,20 \pm 1,26$		

Из данных Таблицы 4 следует, что при увеличении концентрации МКЦ в матрице ПЛ содержание диметилдиоксаланонов (пятичленных циклических соединений) в составе летучих продуктов пиролиза резко снижается, а содержание лактидов (шестичленных циклических соединений) и олигомеров лактидов (три-, тетра- и пентамеров) наоборот возрастает.

Для оценки влияния температуры на механизм термической деструкции ПЛ исследован состав летучих продуктов пиролиза ПЛ при 500 °C в инертной среде аргона. В Таблице 5 представлены данные о составе летучих продуктов пиролиза ПЛ при 400 °C и 500 °C.

Таблица 5 – Относительная концентрация летучих продуктов пиролиза П.	Л при 400 °С и 500 °С
в инертной среде аргона, масс. %	

	Температура, °С		
продукты пиролиза	400	500	
Акриловая кислота	$8,35 \pm 0,25$	$13,\!62 \pm 0,\!67$	

	Температура, °С		
продукты пиролиза	400	500	
Винилуксусная кислота	$1,36 \pm 0,11$	$1,85 \pm 0,10$	
Цис- и транс-1,3-диметилдиоксалан-4-оны	$76,\!78\pm0,\!36$	$61,\!38 \pm 0,\!68$	
Лактиды и их олигомеры (три-, тетра- и пентамеры)	$4,30 \pm 0,37$	$19,\!57\pm0,\!07$	
Неидентифицированные соединения	$1,02 \pm 0,04$	$3,\!59\pm0,\!04$	

Результаты XMC летучих продуктов пиролиза ПЛ показали, что при повышении температуры от 400 °C до 500 °C содержание диметилдиоксаланонов снижается, а концентрация лактидов и их олигомеров (три-, тетра- и пентамеров) напротив возрастает.

3.1.5. Модельный кинетический анализ термической деструкции полилактида и его композиций

В основу модельного кинетического анализа термической деструкции ПЛ положен механизм двух конкурирующих параллельно протекающих реакций, сопровождающихся образованием пятичленных циклических диметилдиоксаланонов и шестичленных циклических лактидов (Рисунок 2).

Рисунок 2 – Механизм конкурирующих параллельно протекающих реакций пиролиза ПЛ: а – образование циклических диметилдиоксаланонов и их разложение до ацетальдегида и акриловой кислоты; б – образование циклических лактидов и их олигомеров путем реакций внутри- и межмолекулярной переэтерификации [9]

На предварительном этапе кинетического анализа использован модельнезависимый подход к расчету энергии активации для выбора начальных условий и предварительной оценки модели процесса по методу Фридмана [10]. Результаты нелинейного регрессионного анализа, с учетом набора реакционных моделей [11] для двухстадийного процесса термической деструкции ПЛ и ПЛ/МКЦ10, позволили рассчитать значения эффективных кинетических параметров, отвечающие наилучшей аппроксимации экспериментальных кривых ТГА (Таблица 6).

Реакционная модель	Параметр	Значение	Коэффициент корреляции
$ \begin{array}{c} \Pi \Pi \\ F_{1} & B \\ A & \xrightarrow{F_{1}} C \\ F_{1} & C \end{array} $	logA ₁ , c ⁻¹ E _{a1} , кДж/моль n ₁ logA ₂ , c ⁻¹ E _{a2} , кДж/моль n ₂	10,9 171,1 1 17,1 227,9 1	0,999854
ПЛ/МКЦ10 $F_1 = B$ $A \xrightarrow{F_1} C$ F_1	logA ₁ , c ⁻¹ E _{a1} , кДж/моль n ₁ logA ₂ , c ⁻¹ E _{a2} , кДж/моль n ₂	13,0 188,5 1 17,1 228,4 1	0,999670

Таблица 6 – Кинетические параметры термодеструкции ПЛ и ПЛ/МКЦ10 в инертной среде аргона

Примечания

1 А – ПЛ или ПЛ/МКЦ10;

2 В – цис- и транс-1,3-диметилдиоксалан-4-оны;

3 С – лактиды и их олигомеры (три-, тетра- и пентамеры);

4 logA₁, Ea₁ и n₁ – кинетические параметры (предэкспоненциальный множитель, энергия активации и порядок реакции соответственно) для реакции, протекающей с образованием 1,3-диметилдиоксалан-4-онов (В);

5 logA₂, Ea₂ и n₂ – кинетические параметры для реакции, приводящей к образованию лактидов и их олигомеров (три-, тетра- и пентамеров) (С);

6 F₁ – кинетическая модель реакции первого порядка.

Согласно данным Таблицы 6 рассчитанные значения энергии активации Е_а на стадии образования лактидов и их олигомеров (С) для ПЛ и ПЛ/МКЦ10 практически совпадают (227,9 кДж/моль для ПЛ и 228,4 кДж/моль для ПЛ/МКЦ10). Однако параллельная стадия внутримолекулярного разложения ПЛ с образованием 1,3диметилдиоксалан-4-онов (В) при термической деструкции ПЛ/МКЦ10 более энергоемкая, чем в случае исходного ПЛ (188,5 кДж/моль и 171,1 кДж/моль соответственно), наблюдается резкое снижение концентрации из-за чего диметилдиоксаланонов в составе летучих продуктов термической деструкции ПЛ с ростом концентрации МКЦ в композиции (Таблица 4). Данная тенденция объясняется стерическими затруднениями, которые вызывает МКЦ, в результате чего образование переходного состояния в виде пятичленных циклических 1,3-диметилдиоксалан-4-онов затруднено (Рисунок 2, а).

С использованием вычисленных кинетических параметров термической деструкции ПЛ и ПЛ/МКЦ10 выполнено прогнозирование суммарных концентраций цис- и транс-1,3-диметилдиоксалан-4-онов (В) и циклических лактидов и их олигомеров (три-, терта- и пентамеров) (С) от времени в изотермических условиях в температурном диапазоне 330–600 °C. В качестве первоначальной температуры прогнозирования выбрана Т_{н.р.} ПЛ в среде аргона (Таблица 2). Так как при температурах, превышающих 600 °C, влияние вторичных процессов на механизм термической деструкции ПЛ становится преобладающим, в качестве конечной температуры выбрано значение 600 °C [12; 13].

На Рисунке 3 представлен прогноз кинетических кривых накопления основных продуктов пиролиза ПЛ и ПЛ/МКЦ10 при температуре 330 °C, выполненный с использованием кинетических параметров (Таблица 6) в заданных изотермических условиях термического разложения ПЛ.

Рисунок 3 – Расчетные зависимости суммарных концентраций пятичленных циклических 1,3-диметилдиоксалан-4-онов (В) и шестичленных циклических лактидов и их олигомеров (три-, тетра- и пентамеров) (С) при температуре 330 °С от времени для ПЛ (а) и ПЛ/МКЦ10 (б)

В соответствии с Рисунком 3 при температуре начала разложения Т_{н.р.} ПЛ, равной 330 °C, образуются преимущественно пятичленные циклические цис- и транс-1,3диметилдиоксалан-4-оны (В) (95,7 масс. % и 83,38 масс. % для ПЛ и ПЛ/МКЦ10 соответственно).

На Рисунке 4 представлены расчетные кинетические кривые накопления суммарных концентраций основных летучих продуктов пиролиза ПЛ – В и С, полученные при температурах 400 °C и 500 °C, соответствующих экспериментальным условиям проведения пиролитической ХМС (решена прямая кинетическая задача).

Рисунок 4 – Расчетные зависимости суммарных концентраций пятичленных циклических 1,3-диметилдиоксалан-4-онов (В) и шестичленных циклических лактидов и их олигомеров (три-, тетра- и пентамеров) (С) при температурах 400 °С (а) и 500 °С (б) от времени для ПЛ

При 400 °C соотношение продуктов B/C по результатам расчета 79,2 масс. % к 7,36 масс. % (Рисунок 4, а) практически совпадает с данными пиролитической ХМС - 76,78 масс. % к 4,30 масс. % (Таблица 4), что является доказательством справедливости предложенной кинетической модели конкурирующих параллельно протекающих реакций первого порядка, представленной в Таблице 6. Корректность выбора данной кинетической модели подтверждается и для экспериментов, проведенных при 500 °C: расчетное соотношение продуктов В/С составляет 71,4 масс. % к 27,8 масс. % (Рисунок 4, б), а соотношение продуктов В/С по результатам пиролитической XMC – 61,38 масс. % к 19,57 масс. % (Таблица 5).

На Рисунке 5 представлены результаты прогнозирования суммарных концентраций основных летучих продуктов пиролиза ПЛ/МКЦ10 – В и С при температуре 400 °С от времени.

Рисунок 5 – Расчетные зависимости суммарных концентраций пятичленных циклических 1,3-диметилдиоксалан-4-онов (В) и шестичленных циклических лактидов и их олигомеров (три-, тетра- и пентамеров) (С) при температуре 400 °С от времени для ПЛ/МКЦ10

В соответствии с данными расчета суммарных концентраций основных продуктов пиролиза ПЛ/МКЦ10 – В и С, представленными на Рисунке 5, при температуре 400 °С и

15

времени 3 мин образуются преимущественно пятичленные циклические диметилдиоксаланоны (74,3 масс. %) и около 10,2 масс. % шестичленных лактидов и их олигомеров (три-, тетра- и пентамеров).

На Рисунке 6 представлены расчетные кинетические кривые накопления суммарных концентраций основных летучих продуктов пиролиза ПЛ – В и С в изотермическом режиме в температурном диапазоне 550–600 °C.

Рисунок 6 – Расчетные зависимости суммарных концентраций пятичленных циклических 1,3-диметилдиоксалан-4-онов (а) и шестичленных циклических лактидов и их олигомеров (три-, тетра- и пентамеров) (б) при температурах 550 °C (1), 570 °C (2), 580 °C (3), 590 °C (4) и 600 °C (5) для ПЛ

В соответствии с результатами расчета суммарных концентраций основных летучих продуктов пиролиза ПЛ с повышением температуры от 550 °C до 600 °C количество пятичленных цис- и транс-1,3-диметилдиоксалан-4-онов уменьшается от 57,03 масс. % до 42,55 масс. % (Рисунок 6, а), а выход шестичленных лактидов и их олигомеров (три-, тетрапентамеров) 42,70 масс. % И растет от ДО 57,44 масс. % (Рисунок 6, б).

Таким образом, показано, что на количественное изменение состава летучих продуктов термической деструкции ПЛ и ПЛ/МКЦ10 в первую очередь влияют стерические затруднения, вызываемые МКЦ, а во вторую – температурные условия проведения пиролиза.

3.2. Исследование полиэтилена и его композиций

3.2.1. Термогравиметрический анализ полиэтилена и его композиций

Термическая и термоокислительная стабильность ПЭВП и его композиций с МКЦ изучена с использованием метода ТГА в среде аргона и воздуха соответственно при нагревании от 20 °C до 800 °C со скоростью нагревания 20 °C/мин. Результаты обработки экспериментальных данных ТГА представлены в Таблице 7.

11	1				
05	Aŗ	Аргон		Воздух	
Образец	Т _{н.р.} , °С (± 1 °С)	Т _{м.с.р.} , °С (± 0,2 °С)	Т _{н.р.} , °С (± 1 °С)	Т _{м.с.р.} , °С (± 0,2 °С)	
ПЭВП	420	488	285	323/424	
ПЭВП/МКЦ5	340	363 ⁽¹⁾ /490 ⁽²⁾	280	342 ⁽¹⁾ /439 ⁽²⁾ /481 ⁽³⁾	
ПЭВП/МКЦ20	300	360 ⁽¹⁾ /490 ⁽²⁾	280	346 ⁽¹⁾ /438 ⁽²⁾ /487 ⁽³⁾	
ПЭВП/МКЦ50	270	353 ⁽¹⁾ /488 ⁽²⁾	257	346 ⁽¹⁾ /446 ⁽²⁾ /490 ⁽³⁾	
МКЦ	285	370	263	344 ⁽¹⁾ /482 ⁽³⁾	

Таблица 7 – Основные характеристики ПЭВП и композиций ПЭВП/МКЦ, полученные методом ТГА при скорости нагревания 20 °С/мин в среде аргона и воздуха

Примечания:

1 – температура точки перегиба, соответствующая стадии разложения МКЦ;

2 – температура точки перегиба, соответствующая стадии разложения ПЭВП;

3 – температура точки перегиба, соответствующая стадии выгорания карбонизованного остатка МКЦ;

4 Т_{н.р.} – температура начала разложения;

5 Т_{м.с.р.} – температура точки перегиба, соответствующая максимальной скорости стадии термического разложения.

Анализ данных Таблицы 7 показал, что значения Т_{м.с.р.} ПЭВП при нагревании в инертной среде аргона практически не зависят от содержания МКЦ, что свидетельствует об отсутствии влияния МКЦ на термическую стабильность ПЭВП. Отличительной особенностью влияния МКЦ на термоокислительную деструкцию ПЭВП является рост Т_{м.с.р.}, соответствующей стадии разложения ПЭВП. Данный эффект стабилизации может быть связан с торможением радикально-цепного процесса деструкции композиций вследствие реакции рекомбинации макрорадикалов ПЭВП и целлюлозного кокса, приводящей к обрыву цепи.

3.2.2. Пиролитическая хромато-масс-спектрометрия полиэтилена и его композиций

В Таблице 8 отражены данные о распределении летучих продуктов пиролиза ПЭВП и его композиций с МКЦ по классам соединений в среде аргона при 500 °C.

	1					
Класс соединений		Образец				
	ПЭВП	ПЭВП/МКЦ5	ПЭВП/МКЦ20	ПЭВП/МКЦ50		
Диены	$7,71 \pm 0,10$	9,66 ± 0,16	$9{,}00\pm0{,}08$	8,63 ± 0,11		
Алкены	64,31 ± 0,06	$62,\!26\pm0,\!04$	$56,45 \pm 0,13$	$53,40 \pm 0,15$		
Алканы	$27,97 \pm 0,04$	$28,08 \pm 0,11$	$32,45 \pm 0,06$	$30,\!49\pm0,\!03$		
Другие соединения	$0,\!00 \pm 0,\!00$	$0,00 \pm 0,00$	$2,10 \pm 0,10$	$7,\!47 \pm 0,\!02$		

Таблица 8 – Распределение летучих продуктов пиролиза ПЭВП и его композиций с МКЦ по классам соединений при 500 °C в инертной среде аргона, масс. %

Основную часть продуктов пиролиза ПЭВП и ПЭВП/МКЦ при 500 °C составляют алкены, алканы и диены (Таблица 8).

В Таблице 9 и на Рисунке 7 представлены данные, отражающие распределение углеводородных продуктов пиролиза ПЭВП и его композиций с МКЦ по молекулярному весу.

Таблица 9 – Распределение углеводородных продуктов пиролиза ПЭВП и композиций ПЭВП/МКЦ по молекулярному весу при 500 °С в инертной среде аргона

Композиция	Содержание компонентов в пробе, масс. %		
	C ₈ –C ₁₇	C ₁₈ -C ₃₄	
ПЭВП	$48,\!25\pm0,\!45$	$51,75 \pm 0,45$	
ПЭВП/МКЦ5	$56,20 \pm 0,41$	$43,80 \pm 0,40$	
ПЭВП/МКЦ20	$78,\!58\pm0,\!39$	$21,42 \pm 0,39$	
ПЭВП/МКЦ50	$82,25 \pm 0,52$	$17,75 \pm 0,53$	

Рисунок 7 – Состав первичных продуктов пиролиза ПЭВП в зависимости от содержания МКЦ при 500 °С в среде аргона, где 1 – летучие продукты пиролиза C₈–C₁₇; 2 – летучие продукты пиролиза C₁₈–C₃₄

В соответствии с данными Таблицы 9 и Рисунка 7 при увеличении содержания МКЦ в композициях с ПЭВП возрастает концентрация более легких летучих продуктов пиролиза ряда C₈–C₁₇, а выход углеводородов фракции C₁₈–C₃₄ наоборот уменьшается.

На Рисунке 8 представлены хроматограммы летучих продуктов пиролиза ПЭВП и его композиций с МКЦ при 500 °С в инертной среде аргона.

Рисунок 8 – Хроматограммы гексановых растворов продуктов пиролиза ПЭВП, выдержанного при 170 °С в течение 5 мин (1), ПЭВП/МКЦ5 (2), ПЭВП/МКЦ20 (3) и ПЭВП/МКЦ50 (4): а – пик, соответствующий времени выхода фурфурола, б – пик, соответствующий времени выхода 5-метил-2-фурфураля, в – пик, соответствующий времени выхода левоглюкозенона

ПЭВП/МКЦ20 ПЭВП/МКЦ50 Ha хроматограммах композиций И идентифицированы соответствующие пики, продуктам пиролиза целлюлозы: фурфуролу, 5-метил-2-фурфуралю и левоглюкозенону (Рисунок 8). Поскольку известно, что основным продуктом ароматизации и конденсации в процессе пиролиза целлюлозы является углеродный кокс [14], наблюдаемое в проведенных экспериментах смещение распределения углеводородных продуктов термического разложения в сторону образования более легких летучих продуктов С8-С17 в композициях ПЭВП/МКЦ (Таблица 9, Рисунок 7) обусловлено стерическими затруднениями в ходе элементарной стадии внутримолекулярной радикальной реакции передачи цепи при физическом взаимодействии поверхности карбонизованных частиц МКЦ и расплава пиролизата ПЭВП.

3.2.3. Модельный кинетический анализ термоокислительной деструкции композиций полиэтилена

Для описания термоокислительной деструкции композиции ПЭВП/МКЦ50 использована двухстадийная упрощенная модель последовательных реакций, для которой система кинетических уравнений принимает вид:

19

$$da / dt = -f(a,b) \cdot A_{1} \cdot \exp\left(-\frac{E_{a1}}{RT_{j,k}}\right), \qquad (1)$$

$$db/dt = -f(b,c) \cdot A_2 \cdot \exp\left(-\frac{E_{a2}}{RT_{j,k}}\right),$$
(2)

 $c = 1 - a - b \,. \tag{3}$

При этом первая стадия соответствует разложению МКЦ, а вторая стадия – матрицы ПЭВП.

Результаты нелинейного регрессионного анализа для двухстадийного процесса термоокислительной деструкции композиции ПЭВП/МКЦ50 позволили рассчитать значения эффективных кинетических параметров (Таблица 10), отвечающие наилучшей аппроксимации термоаналитических кривых ТГА.

Таблица 10 – Кинетические параметры термоокислительной деструкции композиции ПЭВП/МКЦ50, полученные с использованием многовариантного нелинейного регрессионного анализа модельного процесса по данным ТГА

Реакционная модель	Параметр	Значение	Коэффициент корреляции
$A \xrightarrow{F_n} B \xrightarrow{F_n} C$	logA ₁ , с ⁻¹ E _{a1} , кДж/моль n ₁ logA ₂ , с ⁻¹ E _{a2} , кДж/моль n ₂	9,0 127,4 1,6 8,9 161,0 0,8	0,9974

Примечания:

1 logA₁, Ea₁ и n₁ – кинетические параметры (предэкспоненциальный множитель, энергия активации и порядок реакции соответственно) для реакции n-го порядка, соответствующей термоокислительной деструкции МКЦ;

2 logA₂, Ea₂ и n₂ – кинетические параметры для реакции n-го порядка, соответствующей термоокислительной деструкции ПЭВП;

3 F_n – кинетическая модель реакции n-го порядка.

Для тривиальной модели термоокислительной деструкции исходного ПЭ взято литературное значение E_a, равное 120,2 кДж/моль [15].

Результаты сравнительного анализа расчетного значения E_a термоокислительной деструкции ПЭВП в композиции ПЭВП/МКЦ50 с литературными данными по ПЭ (161,0 кДж/моль и 120,2 кДж/моль соответственно) показывают, что МКЦ увеличивает значение E_a термоокислительной деструкции ПЭВП.

<u>ЗАКЛЮЧЕНИЕ</u>

В рамках представленной диссертационной работы изучены термические свойства композиций ПЛ/МКЦ и ПЭВП/МКЦ, а также исследовано влияние МКЦ на состав летучих продуктов пиролиза ПЛ и ПЭВП и, соответственно, на механизмы их термической деструкции. Установлено, что МКЦ в композициях с ПЛ и ПЭВП вызывает стерические затруднения, которые приводят к уменьшению выхода пятичленных цис- и транс-1,3-диметилдиоксалан-4-онов в процессе термической деструкции ПЛ и

увеличению концентрации углеводородов фракции C₈–C₁₇ в составе летучих продуктов пиролиза ПЭВП.

Знание закономерностей влияния МКЦ на изменение количественного состава летучих продуктов термической деструкции ПЛ и ПЭВП позволяет посредством изменения концентрации МКЦ в композициях смещать равновесие процесса в сторону увеличения выхода целевых продуктов, используемых в химическом синтезе.

Дальнейшие углубленные исследования влияния МКЦ, а также температуры на механизм и состав летучих продуктов термической деструкции ПЛ и ПЭВП могут быть полезны для поиска оптимальных условий утилизации отходов ПЛ и ПЭВП посредством пиролиза. Причем в качестве наполнителя можно рассмотреть не только МКЦ, но и целлюлозосодержащие добавки, например, растительные волокна.

<u>выводы</u>

1. Установлено, что частицы МКЦ оказывают влияние на морфологию ПЛ за счет своей нуклеирующей способности (зародышеобразования) и вызывают стерические затруднения, которые приводят к изменению количественного состава летучих продуктов термической деструкции ПЛ;

2. Изучено влияние МКЦ на термическую и термоокислительную стабильность ПЛ и ПЭВП: МКЦ снижает термическую и термоокислительную стабильность ПЛ, но повышает термоокислительную стабильность ПЭВП и практически не влияет на его термическую стабильность;

3. С помощью пиролитической хромато-масс-спектрометрии установлено, что МКЦ уменьшает выход диметилдиоксаланонов в составе летучих продуктов пиролиза ПЛ и приводит к увеличению концентрации легких углеводородов фракции С₈–С₁₇ при термической деструкции ПЭВП;

4. Установлено влияние температуры пиролиза на изменение количественного состава летучих продуктов термической деструкции ПЛ: при повышении температуры от 400 °C до 500 °C концентрация лактидов и их олигомеров (три-, тетра- и пентамеров) увеличивается на 15 %, а диметилдиоксаланонов, напротив, уменьшается на 15 %;

5. Подобрана кинетическая модель, наиболее точно описывающая результаты ТГА ПЛ и ПЛ/МКЦ (коэффициент корреляции выше 0,999). На базе данной модели рассчитаны эффективные кинетические параметры термической деструкции ПЛ и ПЛ/МКЦ;

6. С использованием вычисленных эффективных кинетических параметров пиролиза ПЛ и ПЛ/МКЦ выполнен расчет (прогнозирование) основных летучих продуктов их термической деструкции в диапазоне температур 330–600 °C. Сопоставление результатов расчета с экспериментальными данными подтверждает корректность использования предложенной кинетической модели;

7. Рассчитаны эффективные кинетические параметры термоокислительной деструкции ПЭВП/МКЦ.

Список цитируемой литертаруры

1. Vuppaladadiyam, S.S.V. Waste to energy : Trending key challenges and current technologies in waste plastic management / S.S.V. Vuppaladadiyam, A.K. Vuppaladadiyam, S. Murugavelh, V. Šrámek, M. Pohořelý, L. Trakal, S. Bhattacharya, A.K. Sarman, K. Shah, K.K. Plant // Sci Total Environ. – 2023. – Vol. 913. – P. 169436;

2. Seebach, D. α -Alkylation of α -heterosubstituted carboxylic acids without racemization : EPC-synthesis of tertiary alcohols and thiols / D. Seebach, R. Naef, G. Calderary // Tetrahedron. – 1984. – Vol. 40, No 8. – P. 1313–1324;

3. Aitken, R.A. New chemistry of chiral 1,3-dioxolan-4-ones / R.A. Aitken, L.A. Power, A.M.Z. Slawin // Molecules. – 2023. – Vol. 28. – P. 3845;

4. Cairns, S.A. A broad scope of aliphatic polyesters prepared by elimination of small molecules from sustainable 1,3-dioxolan-4-ones / S.A. Cairns, A. Schutheiss, M. P. Shaver // Polymer Chemistry. -2017. -Vol. 8, No 18. -P. 2990–2996;

5. Gazzotti, S. 1,3-Dioxolan-4-ones as promising monomers for aliphatic polyesters: metal-free, in bulk preparation of PLA / S. Gazzotti, M.A. Ortenzi, H. Farina, A. Silvani // Polymers. – 2020. – Vol. 12. – P. 2396;

6. Gazzotti, S. Carvacrol- and cardanol-containing 1,3-dioxolan-4-ones as comonomers for the synthesis of functional polylactide-based materials / S. Gazzotti, M.A. Ortenzi, H. Farina, M. Disimino, A. Silvani // Macromolecules. – 2021. – Vol. [1]. – P. [1–12];

7. Qu, P. Nanocellulose of poly(lactic acid) reinforced with cellulose nanofibrils / P. Qu, Y. Gao, G.-F. Wu, L.-P. Zhang // BioResources. – 2010. – Vol. 5, № 3. – P. 1811–1823;

8. Dogu, B. Behavior of polylactide/microcrystalline cellulose biocomposites : Effects of filler content and interfacial compatibilization / B. Dogu, C. Kaynak // Cellulose. -2015. - Vol. 23, No 1. - P. 611–622;

9. Usachev, S.V. Thermal degradation of various types of polylactides research. The effect of reduced graphite oxide on the composition of the PLA4042D pyrolysis products / S.V. Usachev, S.M. Lomakin, E.V. Koverzanova, N.G. Shilkina, I.I. Levina, E.V. Prut, S.Z. Rogovina, A.A. Berlin // Thermochimica Acta. – 2022. – Vol. 712, No 5. – P. [1-8];

10. Friedman, H.L. Kinetics and gaseous product of thermal decomposition of polymers / H.L. Friedman // Journal of Polymer Science : Part C : Polymer Letters. – 1965. – Vol. 6. – P. 183–195;

11. Opfermann, J. Kinetic analysis using multivariate non-linear regression / J. Opfermann // Journal of Thermal Analysis and Calorimetry. – 2000. – Vol. 60. – P. 641–658;

12. McNeill, I.C. Degradation studies of some polyesters and polycarbonates – 2. Polylactide : degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer / I.C. McNeill, H.A. Leiper // Polymer Degradation and Stability. – 1985. – Vol. 11. – P. 309–326;

13. Kopinke, F.-D. Thermal decomposition of biodegradable polyesters – II. Poly(lactic acid) / F.-D. Kopinke, M. Remmler, K. Mackenzie, M. Möder, O. Wachsen // Polymer Degradation and Stability. – 1996. – Vol. 53. – P. 329–342;

14. Lin, Y.-C. Kinetics and mechanism of cellulose pyrolysis / Y.-C. Lin, J. Cho, G.A. Tompsett, P.R. Westmoreland, G.W. Huber // Journal of Physical Chemistry C. – 2009. – Vol. 113. – P. 20097–20107;

15. Lomakin, S.M. Thermal properties of polyethylene/montmorillonite nanocomposites prepared by intercalative polymerization / S.M. Lomakin, L.A. Novokshonova, P.N. Brevnov, A.N. Shchegolikhin // Journal of Materials Science. – 2008. – Vol. 43, № 4. – P. 1340–1353.

Публикации по теме диссертации

Статьи в журналах, включенных в перечень ВАК:

1. Перова, А.Н. Сравнительный анализ термических и физико-механических свойств композиций полиэтилена, содержащих микрокристаллическую и нанофибриллярную целлюлозу / А.Н. Перова, П.Н. Бревнов, С.В. Усачев, Е.В. Коверзанова, А.В. Хватов, С.М. Ломакин // Химическая физика. – 2021. – Т. 40, № 7. – С. 1–9;

Perova, A.N. Comparative analysis of thermal and physico-mechanical properties of polyethylene compositions containing microcrystalline and nanofibrillary cellulose / A.N. Perova, P.N. Brevnov, S.V. Usachev, E.V. Koverzanova, A.V. Khvatov, S.M. Lomakin // **Russian Journal of Physical Chemistry B.** – 2021. – Vol. 15, Nº 4. – P. 716–723;

2. Перова, А.Н. Влияние микрокристаллической целлюлозы на термические свойства полилактида / А.Н. Перова, А.В. Хватов, Н.Г. Шилкина, С.В. Усачев, Е.В. Коверзанова, С.М. Ломакин, А.С. Зиганшина // Вестник технологического университета. – 2021. – Т. 24, № 7. – С. 68–72;

3. Перова, А.Н. Кинетические особенности термической деструкции композиции полилактида, содержащего микрокристаллическую целлюлозу / А.Н. Перова, А.В. Хватов, Н.Г. Шилкина, С.В. Усачев, Е.В. Коверзанова, С.М. Ломакин, Х.С. Абзальдинов, О.Н. Кузнецова, О.В. Стоянов, Г.Е. Заиков // Вестник технологического университета. – 2022. – Т. 25, № 9. – С. 5–11;

4. Перова, А.Н. Влияние температуры пиролиза на состав летучих продуктов термической деструкции полилактида / А.Н. Перова, А.В. Хватов, Н.Г. Шилкина, С.В. Усачев, Е.В. Коверзанова, П.А. Сахаров, С.М. Ломакин, Х.С. Абзальдинов, О.Н. Кузнецова // Вестник технологического университета. – 2023. – Т. 26, № 2. – С. 79–84;

5. Перова, А.Н. Термическая деструкция композиций полилактида, содержащих растительные волокна / А.Н. Перова, С.М. Ломакин, М.И. Арцис, Х.С. Абзальдинов, О.В. Стоянов // Вестник технологического университета. – 2023. – Т. 26, № 11. – С. 50–58.

Публикации в журналах, индексируемых в базе Scopus:

1. Perova, A.N. Influence of various cellulose additives on the thermal properties of polyethylene compositions / A.N. Perova, P.N. Brevnov, S.V. Usachev, A.V. Khvatov, E.V. Koverzanova, S.M. Lomakin, G.E. Zaikov // **Oxidation Communications.** – 2020. – Vol. 43, N_{0} 4. – P. 829–838;

2. Perova, A.N. Thermal properties of polyethylene compositions with micro- and nanocellulose / A.N. Perova, S.V. Usachev, E.V. Koverzanova, A.V. Khvatov, S.M. Lomakin // **IOP Conference Series : Materials Science and Engineering.** -2020. - Vol. 921 - P. 1-8.

Публикации в трудах конференций и съездов:

1. Перова, А.Н. Термические свойства композиций полиэтилена, содержащих микро- и наноцеллюлозные добавки / А.Н. Перова, А.В. Хватов, С.М. Ломакин // Биохимическая физика : Труды XIX Ежегодной молодежной конференции с международным участием ИБХФ РАН-ВУЗЫ «БИОХИМИЧЕСКАЯ ФИЗИКА», III симпозиума «СОВРЕМЕННОЕ МАТЕРИАЛОВЕДЕНИЕ». – 2019. – С. 166–168;

2. Перова, А.Н. Изучение процесса пиролиза и модельный кинетический анализ термодеструкции композиции полиэтилена с микрокристаллической целлюлозой / А.Н. Перова, С.В. Усачев, Е.В. Коверзанова, А.В. Хватов, С.М. Ломакин // Новые материалы и перспективные технологии. Шестой междисциплинарный научный форум с международным участием. – 2020. – С. 522–528.