Нанокомпозиты на основе ультратонких волокон поли(3-гидроксибутирата) с нанолистами оксида графена

Вернуться назад

04.04.2024 г.

Нанокомпозиты на основе ультратонких волокон поли(3-гидроксибутирата) с нанолистами оксида графена

 

Механическое поведение графена характеризуется высокой прочностью, в 200 раз превосходящей сталь. Благодаря своим физико-механическим свойствам, графен стал многообещающим нанонаполнителем для получения высокоэффективных полимерных композитов. Наноматериалы на его основе пригодны для широкого спектра применений, включая суперконденсаторы, солнечные элементы, топливные элементы, литиевые батареи, активные и интеллектуальные упаковочные устройства и системы хранения водорода, биомедицинские применения и так далее. Среди них широко исследованы графен и связанные с ним материалы, а именно, оксид графена и восстановленный оксид графена. Полимерные композиты с графеном были представлены в качестве замены материалов для защиты от электромагнитных помех благодаря их низкой стоимости, устойчивости к коррозии, легкости, универсальности и простоте обработки по сравнению с привычными материалами на основе металлов. Сами графены и их композиционные материалы можно применять в качестве покрытия или даже дополнительно встраивать в армированную волокном полимерную систему, формируя новые композиты. Одно из перспективных применений графена и его оксидов основано на их антибактериальных свойствах. Благодаря двумерной структуре, толщиной всего в один атом углерода, развитой поверхности и функционализации органическими группами, производные графена способны реагировать даже на чрезвычайно малые химические или физические изменения в их окружении. Графеновые нанопластинки рассматриваются не только для улучшения механических свойств матрицы, но и для передачи электрических свойств изоляционному материалу. 

Ученые ИБХФ РАН, РЭУ им. Г.В. Плеханова, ФИЦ ХФ РАН варьировали структуру нанокомпозитов, состоящих из ультратонких волокон  поли(3-гидроксибутирата) (ПГБ) и нанолистов оксида графена (ОГ), регулируя концентрацию модифицирующего агента, и провели комплексные исследования, в которых термофизические, динамические измерения зондовым методом сочетаются с применением сканирующей электронной микроскопии.  
Показано, что смесевые волокна в зависимости от состава имеют различный диаметр и геометрию. Зондовым методом электронного парамагнитного резонанса (ЭПР) и методом дифференциальной сканирующей калориметрии (ДСК) и рассмотрена особенность кристаллической и аморфной структуры смесевой композиции. При добавлении 0,05, 0,1, 0,3 и 1% оксида графена в ПГБ наблюдается нелинейная зависимость изменения молекулярной динамики (времени корреляции τ) и энтальпии плавления системы (ΔH). Экспозиция в водной среде при 70ºС и озонолиз модифицированных волокон при разных временах воздействия обусловливает снижение τ и ΔH. УФ облучение при времени воздействия до 120 мин приводит к росту τ, при более продолжительном воздействии – значительному снижению этого параметра. Полученные волокнистые материалы обладают бактерицидными свойствами и должны найти применение при создании новых терапевтических систем антибактериального и противоопухолевого действия. 

Статья опубликована в издании Polymers.

Изучение процессов, протекающих в полимерах и полимерных смесях при воздействии температуры, влаги и/или ультрафиолета (УФ), очень важно с точки зрения их эксплуатации, особенно в условиях окружающей среды, где полимерные изделия подвергаются действию агрессивных факторов. 

Svetlana G. Karpova, Anatoly A. Olkhov, Ivetta A. Varyan, Natalia G. Shilkina, Alexander A. Berlin, Anatoly A. Popov, Alexey L. Iordanskii. Biocomposites Based on Electrospun Fibers of Poly(3-hydroxybutyrate) and Nanoplatelets of Graphene Oxide: Thermal Characteristics and Segmental Dynamics at Hydrothermal and Ozonation Impact. Polymers 2023, 15, 4171. DOI: 10.3390/polym15204171  


  
Рисунок. Зависимость времени корреляции (а) и энтальпии плавления (б) от состава волокон ПГБ/ОГ: 1 – исходный образец, 2, 3 – после экспозиции в водной среде при 70ºС в течение 60, 240 мин; 4 – после озонолиза в течение 240 мин; 5 – после УФ облучения в течение 240 мин.